This repository contains the source code of our work on designing efficient CNNs for computer vision

Overview

Efficient networks for Computer Vision

This repo contains source code of our work on designing efficient networks for different computer vision tasks: (1) Image classification, (2) Object detection, and (3) Semantic segmentation.

Real-time semantic segmentation using ESPNetv2 on iPhone7. See here for iOS application source code using COREML.
Seg demo on iPhone7 Seg demo on iPhone7
Real-time object detection using ESPNetv2
Demo 1
Demo 2 Demo 3

Table of contents

  1. Key highlihgts
  2. Supported networks
  3. Relevant papers
  4. Blogs
  5. Performance comparison
  6. Training receipe
  7. Instructions for segmentation and detection demos
  8. Citation
  9. License
  10. Acknowledgements
  11. Contributions
  12. Notes

Key highlights

  • Object classification on the ImageNet and MS-COCO (multi-label)
  • Semantic Segmentation on the PASCAL VOC and the CityScapes
  • Object Detection on the PASCAL VOC and the MS-COCO
  • Supports PyTorch 1.0
  • Integrated with Tensorboard for easy visualization of training logs.
  • Scripts for downloading different datasets.
  • Semantic segmentation application using ESPNetv2 on iPhone can be found here.

Supported networks

This repo supports following networks:

  • ESPNetv2 (Classification, Segmentation, Detection)
  • DiCENet (Classification, Segmentation, Detection)
  • ShuffleNetv2 (Classification)

Relevant papers

Blogs

Performance comparison

ImageNet

Below figure compares the performance of DiCENet with other efficient networks on the ImageNet dataset. DiCENet outperforms all existing efficient networks, including MobileNetv2 and ShuffleNetv2. More details here

DiCENet performance on the ImageNet

Object detection

Below table compares the performance of our architecture with other detection networks on the MS-COCO dataset. Our network is fast and accurate. More details here

MSCOCO
Image Size FLOPs mIOU FPS
SSD-VGG 512x512 100 B 26.8 19
YOLOv2 544x544 17.5 B 21.6 40
ESPNetv2-SSD (Ours) 512x512 3.2 B 24.54 35

Semantic Segmentation

Below figure compares the performance of ESPNet and ESPNetv2 on two different datasets. Note that ESPNets are one of the first efficient networks that delivers competitive performance to existing networks on the PASCAL VOC dataset, even with low resolution images say 256x256. See here for more details.

Cityscapes PASCAL VOC 2012
Image Size FLOPs mIOU Image Size FLOPs mIOU
ESPNet 1024x512 4.5 B 60.3 512x512 2.2 B 63
ESPNetv2 1024x512 2.7 B 66.2 384x384 0.76 B 68

Training Receipe

Image Classification

Details about training and testing are provided here.

Details about performance of different models are provided here.

Semantic segmentation

Details about training and testing are provided here.

Details about performance of different models are provided here.

Object Detection

Details about training and testing are provided here.

Details about performance of different models are provided here.

Instructions for segmentation and detection demos

To run the segmentation demo, just type:

python segmentation_demo.py

To run the detection demo, run the following command:

python detection_demo.py

OR 

python detection_demo.py --live

For other supported arguments, please see the corresponding files.

Citation

If you find this repository helpful, please feel free to cite our work:

@article{mehta2019dicenet,
Author = {Sachin Mehta and Hannaneh Hajishirzi and Mohammad Rastegari},
Title = {DiCENet: Dimension-wise Convolutions for Efficient Networks},
Year = {2020},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
}

@inproceedings{mehta2018espnetv2,
  title={ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network},
  author={Mehta, Sachin and Rastegari, Mohammad and Shapiro, Linda and Hajishirzi, Hannaneh},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2019}
}

@inproceedings{mehta2018espnet,
  title={Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation},
  author={Mehta, Sachin and Rastegari, Mohammad and Caspi, Anat and Shapiro, Linda and Hajishirzi, Hannaneh},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={552--568},
  year={2018}
}

License

By downloading this software, you acknowledge that you agree to the terms and conditions given here.

Acknowledgements

Most of our object detection code is adapted from SSD in pytorch. We thank authors for such an amazing work.

Want to help out?

Thanks for your interest in our work :).

Open tasks that are interesting:

  • Tensorflow implementation. I kind of wanna do this but not getting enough time. If you are interested, drop a message and we can talk about it.
  • Optimizing the EESP and the DiceNet block at CUDA-level.
  • Optimize and port pretrained models across multiple mobile platforms, including Android.
  • Other thoughts are also welcome :).

Notes

Notes about DiCENet paper

This repository contains DiCENet's source code in PyTorch only and you should be able to reproduce the results of v1/v2 of our arxiv paper. To reproduce the results of our T-PAMI paper, you need to incorporate MobileNet tricks in Section 5.3, which are currently not a part of this repository.

Owner
Sachin Mehta
Research Scientist at Apple and Affiliate Assistant Professor at UW
Sachin Mehta
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
Tensorflow-Project-Template - A best practice for tensorflow project template architecture.

Tensorflow Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributi

Mahmoud G. Salem 3.6k Dec 22, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022