A simple portable USB MIDI controller based on Raspberry-PI Pico and a 16-button keypad, written in Circuit Python

Overview

RPI-Pico-16-BTn-MIDI-Controller-using-CircuitPython

A simple portable USB MIDI controller based on Raspberry-PI Pico, written in Circuit Python.

Links/ References:

YouTube Link for My Demo: 
CircuitPython UF2 file Download: https://circuitpython.org/board/raspberry_pi_pico/
CircuitPython Library Download: https://circuitpython.org/libraries
CircuitPython Docs on the modules used: https://circuitpython.readthedocs.io/en/latest/shared-bindings/displayio/index.html
Mu Editor Download Link: https://codewith.mu/

*** Please make sure to match the library and the UF2 file versions ***
*** Even Notepad can be used to modify the "code.py" file on the RPI-Pico, but Mu editor has the Serial-terminal integrated and also checks for syntax and other issues in the code, hence I used the above. ***
*** Only issue with (the version of Mu) editor I have is that it crashes if large amoumnt of serial data needs to be displayed and/or the data is updated too fast in the serial terminal. ***

Detailed Description of the project/ device:

The aim is to create a simple and portable USB MIDI controller to be used with DAWs availble on mobile devices, e.g., FL Studio Mobile, Garage Band, etc. 
This is because I personally find playing something on a touch-screen to be very difficult, hence if I have any spontaneous musical ideas, I almost always have to sit down with my laptop, plug the usb-audio-interface, plug my keyboard as MIDI device, etc etc, which sometimes may or may not be possible depending on the situation, as well as mood.
*** I am fully aware that portable MIDI controllers and Keyboards are readily available, but where's the fun in just simply buying them, when you can make one yourself ;-) ***
*** If one is interested solely in the music-production aspect, I will suggest to get the commercially available devices and ignore this project, as it will save precious time, but if you like to DIY, then please keep reading ***

The device (after construction) shows up and acts as general MIDI device in PC or Android. I have tested in Windows 10 with Waveform-11 and in Android Smartphone with FL-Studio mobile, and it works with both and device is recognized without any drivers. Thanks to the amazing libraries from Adafruit Industries.

The controller is USB bus powered and has 16-buttons in the keypad, which can be used to send MIDI notes. Multiple notes can be sent at ones, but the polyphony is limited by the ghost-note effect of the 4x4 button matrix. This can be fixed by using diodes with switches, one can google for "diode keypad matrix" regarding the same for more information.

The controller's GUI consists of the 128x64 oled screen and the rotary encoder. The notes for each key in the keypad is displayed and with the rotary encoder the velocity value can be selected, as well as transpose and octave. 

The controller also has a scale mode, where currently 10 scales can be selected, with chromatic-scale as the default.
It also has a chord mode, where Power, Major, Minor and Diminshed chords can be sent by presseing only one button.

For more information and a demo of the features, please visit the YouTube link.

Parts Required (excluding the PC, MIDI-host-device and the usb-cable):

1. Raspberry-Pi Pico microcontroller - 1pc
2. 0.96 inch 128x64 monochrome oled display (here the blue one is used, as it is cheaper). - 1pc
3. Rotary encoder with switch (5-pins, 2-pins for built-in switch and 3 pins for the encoder) - 1pc
4. Prototyping PCB (Vero-board) or breadboard, for connecting everything together - 1pc
5. 1 Mega Ohm resistor as pull-down for the touch-input - 1pc
6. Some Connecting wires - as per requirement

Hardware Connection Information:

1. Currrent Keypad Setup:

Keypad Pins:      a   b   c   d   e   f   g   h   i   j   k 
RPI Pico Pins:    GP0 GP1 GP2 GP3 GP4 GP5 GP6 GP7 GP8 GP9 GP10

Matrix:             1(c,b)   2(c,d)   3(c,e)   4(h,i)
                    5(a,b)   6(a,d)   7(a,e)   8(g,i)
                    9(f,k)   10(f,d)  11(f,e)  12(f,i)
                    13(j,k)  14(j,d)  15(j,e)  16(j,i)
                    Encoder-Switch (h,k)

2. Encoder Connection:

                    L to R, knob facing towards viewer:
                    clk (pin-1): GP14 and dt (pin-3): GP15, com (pin-2): Gnd

3. I2C 0.96 Blue OLED Connections:

                    sda-pin: GP20 and scl-pin: GP21; 
                    vdd, vss to 3.3V and gnd respectively 
                    Address: 0x3C

4. Touch Input for Sustain:

                    GP11 pin, and a 1meg resistor pull-down from the pin to gnd.

Notes:

1. The keypad I have used here is non-standard. I found and bought the same from my local electronic shop, and it is most likely a replacement part for land-line telephone. But the code in the "scanKBD()" function, can be easily modified to accomodate the readily available 4x4 matrix keypads.

2. Based on the above, since I had some extra lines available for the 16-key matrix, I placed the encoder switch between h,k nodes, if standard 16-key, i.e., 4x4 matrix is used, the encoder pin can be shifted to any other GPIO pin. The encoder switch-reading is done inside the main while loop. 

3. The oled brightness is currently set to 0.4 (i.e., 40%), and the same can be changed in the "Initializing the 0.96inch OLED Display" portion of the code.

4. The threshold for the touch-input (for sustain) can be set in the "Setting Touch-pin for Sustain Input" portion of the code.

5. If the oled screen has different address (or different I2C speed, here 1,000,000 is used), the same can also be modified in the "Initializing the 0.96inch OLED Display" section.

Steps to load the code in RPI-Pico, (many other tutorials are also available on the internet on how to load CircuitPython in RPI-Pico, please feel free to refer to them):

1. For a new/ fresh RPI-Pico which is not setup for circuit python, press and hold the "bootsel" button on the Pico, and then plugin to the PC and release the button.

2. The Pico should show-up as a drive "RPI-RP2", and in that drive copy the the CircuitPython's UF2 file, either from this repository or from the CircuitPython page, link mentioned above, near the heading.

3. After the UF2 file is copied, the Pico now appears as a new drive ("CIRCUITPY") and it should contain the "lib" folder and the "code.py" file.

4. In the lib-folder all the required libraries for code.py should be present, and one can copy the contents of the lib-folder attached in this repository or download the corresponding latest versions from the CircuitPython page. 

*** Please make sure, the UF2 file and the libs used are of the same version, otherwise errors may occur ***.

5. In the Pico's "code.py" file, copy the contents of the "16-BTn_MIDI_Controller_ver1.py" file present in this repository, and as soon as the changes are saved in the "code.py" file, the code should start running.

6. Please make the required changes to the "code.py" file to match the hardware connections in your design.
Owner
Rounak Dutta
Rounak Dutta
Scapy: the Python-based interactive packet manipulation program & library. Supports Python 2 & Python 3.

Scapy Scapy is a powerful Python-based interactive packet manipulation program and library. It is able to forge or decode packets of a wide number of

SecDev 8.3k Jan 08, 2023
Adafruit IO connected smart thermostat based on CircuitPython.

Adafruit IO Thermostat Adafruit IO connected smart thermostat based on CircuitPython. Background and Motivation I have a 24 V Heat-only system with a

Shubham Chaudhary 1 Jan 18, 2022
Example code to sending USB Gadget multimedia keys via Python

Send Multimedia USB HID Keys via Python As an USB Gadget in Linux This gives a simple script with zero dependencies that can easily run on any Linux d

DevOps Nirvana 2 Jan 02, 2023
Real-time Coastal Monitoring at the University of Hawaii at Manoa

Coastal Monitoring at the University of Manoa Source code for Beaglebone/RPi-based data loggers, shore internet gateways, and web server. Software dev

Stanley Lio 7 Dec 07, 2021
Watson-Assistant with integration capabilities

Watson-Assistant-Integration Watson-Assistant with integration capabilities "main.py" should be deployed as Cloud Function (Action) on IBM Cloud. For

Sergey Usachev 1 Dec 20, 2021
Homeautomation system created with Raspberry Pi 3 and Firebase.

Homeautomation System - Raspberry Pi 3 Desenvolvido com Python, Flask com AJAX e Firebase permite o controle local e remoto Itens necessários Raspberr

Joselino Santos 0 Mar 09, 2022
Andreas Frisch 1 Jan 10, 2022
Automatic Watering System using Soil Moisture Sensor and RTC Timer with Arduino

Automatic-Watering-System - Technical Answers to Real-World Problems. Evolution of Watering Manually to Watering Automatically.

Vaishnavi Pothugunta 4 Dec 31, 2021
A python script for Homeassistant that counts down the days to birthdays, anniversaries etc

Date Countdown A python script for Homeassistant that counts down the days to birthdays, anniversaries etc Important note I no longer use homeassistan

Marc Forth 21 Mar 12, 2022
Python information display framework aimed at e-ink devices

My display, using a Raspberry Pi Zero W and Waveshare 6" e-paper hat infodisplay Modular information display framework aimed at e-ink devices. Built u

Niek Blankers 3 Apr 08, 2022
Create (templateable) cameras that display qr codes in homeassistant

QRCam This custom component creates cameras displaying qrcodes. The QRCodes can be static or generated from templates. If you use a template as conten

Jannes Müller 5 Oct 06, 2022
This Home Assistant custom component adding support for controlling Midea dehumidifiers on local network.

This custom component for Home Assistant adds support for Midea air conditioner and dehumidifier appliances via the local area network. homeassistant-

Nenad Bogojevic 92 Dec 31, 2022
Bucatini: a soft PIPE PHY for FPGA SerDes

Bucatini: a soft PIPE PHY for FPGA SerDes Bucatini is a noodly gateware layer capable of transforming an FPGA SerDes into a PIPE PHY, allowing you to

Great Scott Gadgets 28 Dec 02, 2022
LT-OCF: Learnable-Time ODE-based Collaborative Filtering, CIKM'21

LT-OCF: Learnable-Time ODE-based Collaborative Filtering Our proposed LT-OCF Our proposed dual co-evolving ODE Setup Python environment for LT-OCF Ins

Jeongwhan Choi 15 Dec 28, 2022
This repository contains all the code and files needed to simulate the notspot quadrupedal robot using Gazebo and ROS.

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
Parametric open source reconstructions of Voron printed parts

The Parametric Voron This repository contains Fusion 360 reconstructions of various printed parts from the Voron printers

Matthew Lloyd 26 Dec 19, 2022
A Fear and Greed index visualiser for Bitcoin on a SSD1351 OLED Screen

We're Doomed - A Bitcoin Fear and Greed index OLED visualiser Doom is a first-person-shooter from the 1990s. The health status monitor was one of the

VEEB 19 Dec 29, 2022
ModbusTCP2MQTT - Sungrow & SMA Solar Inverter addon for Home Assistant

ModbusTCP2MQTT Sungrow & SMA Solar Inverter addon for Home Assistant This addon will connect directly to your Inverter using Modbus TCP. Support model

Teny Smart 40 Dec 21, 2022
A rubiks cube timer using a distance sensor and a raspberry pi 4, and possibly the pi pico to reduce size and cost.

distance sensor cube timer A rubiks cube timer using a distance sensor and a raspberry pi 4, and possibly the pi pico to reduce size and cost. How to

3 Feb 21, 2022
Extremely simple PyBadge examples to demonstrate different aspects of CircuitPython using PyBadge hardware.

BeginnerPyBadge I purchased a PyBadge recently. I'm new to hardware. I was surprised how hard it was to find easy examples demonstrating how different

Rubini LaForest 2 Oct 21, 2021