Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns

Overview

Diffraction Simulations - Angular Spectrum Method

Implementation of the Angular Spectrum method in Python to simulate Diffraction Patterns with arbitrary apertures. You can use it for simulating both monochromatic and polychromatic light also with arbitrary spectrums.

How the method and the simulator work is described in this Article. Take a look to the Youtube video to see the animated simulations!

animation

Installation

  1. Clone repository
  2. Install requirements via pip install -r requirements.txt

Examples

To perform the simulations, just run from the folder proyect in the command prompt the corresponding Python scripts:

python hexagon_monochromatic.py

N|Solid

python hexagon_polychromatic.py

N|Solid

python rectangular_grating_small.py

N|Solid

python rectangular_grating.py

N|Solid

python circular_rings.py

N|Solid

python text.py

N|Solid

Comments
  • Possibility of Phase-Object Diffraction Simulation

    Possibility of Phase-Object Diffraction Simulation

    Hi! Thanks for your really amazing work! I am a newbie in optics and I am wondering whether it's possible to produce diffraction like image And here is the light field with the description from the paper

    A laser beam emitted from a He–Ne laser at a wavelength of 632.8 nm (NEC Electronics Inc. GLG5002) was first spatially filtered by a pinhole with an aperture of 10 µm and then collimated by a lens with a focal length of f= 200mm. The plane wave was guided to illuminate a phase object, producing intensity images as shown in Fig. 5b. To acquire the diffraction pattern, we placed the camera (SensiCam EM, pixel pitch: 8 µm) at a distance d= 22.3mm from the phase object.

    image

    Appreciate it a lot if you could help me about this:) Wish you a good day!

    opened by FishWoWater 8
  • Is it possible to modulate the initial MonochromaticField?

    Is it possible to modulate the initial MonochromaticField?

    Thank you for creating such a useful tool. In my recent research, I need a plane wave only whose intensity is modulated, but I can't achieve this effect with MonochromaticField and Could you tell me how to implement this function?

    opened by Windaway 5
  • plot_intensity() and plot_colors() show different results

    plot_intensity() and plot_colors() show different results

    Hi,

    firstly I would like to thank you for this nice package. However, I am experiencing some trouble with the visualisation functions. Below, you can find the example "circular_aperture_lens.py" with two added lines of code. It seems to me that the functions plot_intensity() and plot_colors() show different results, which is somehow confusing. Is this a bug or did I use the functions not as intended?

    import diffractsim
    diffractsim.set_backend("CPU") #Change the string to "CUDA" to use GPU acceleration
    
    from diffractsim import MonochromaticField, nm, mm, cm, CircularAperture, Lens
    
    F = MonochromaticField(
        wavelength = 543 * nm, extent_x=13. * mm, extent_y=13. * mm, Nx=2000, Ny=2000, intensity =0.01
    )
    
    F.add(CircularAperture(radius = 0.7*mm))
    F.propagate(100*cm)
    F.add(Lens(f = 100*cm)) # Just remove this command to see the pattern without lens
    F.propagate(100*cm)
    
    rgb = F.get_colors()
    F.plot_colors(rgb, xlim=[-3*mm,3*mm], ylim=[-3*mm,3*mm])
    F.plot_intensity(F.get_intensity(), xlim=[-3*mm,3*mm], ylim=[-3*mm,3*mm])
    
    opened by CakeUser321 3
  • NX and NY definition?

    NX and NY definition?

    Hi! Could you explain me what are NX and NY in MonochromaticField and PolychromaticField? What are they correlation with extent_x and extent_y visually? I would like to simulate diffraction pattern of a grating 20 cm in front of a telescope (F=11 m, D=60 cm) at its focal plane. Do you have some suggestions? Thank you in advance.

    opened by irfanimaduddin 3
  • How should handle the circular convolution and the linear convolution in the angular spectrum method?

    How should handle the circular convolution and the linear convolution in the angular spectrum method?

    Hi, there. Firstly, thank you for your great job for the fresh men like me! It's really helpful! So here is the thing, I read the angular spectrum method part to implement the wave propagation, and I noticed you just used two fft2s and ifft. So this is a circular convolution, right? I am wondering what should we choose between circular convolution and linear convolution? Thanks in advance!

    opened by nophy 2
  • Running rectangular slit with CPU

    Running rectangular slit with CPU

    Running rectangular slit with CPU gives me the following error- AttributeError: 'RectangularSlit' object has no attribute 'xx'

    rectangular_slit.zip

    [I have attached the code I'm running] complete traceback-

    Traceback (most recent call last):

    File "", line 1, in runfile('C:/Users/acer/Desktop/python-sonu/programms/rectangular_slit.py', wdir='C:/Users/acer/Desktop/python-sonu/programms')

    File "C:\Users\acer\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 705, in runfile execfile(filename, namespace)

    File "C:\Users\acer\Anaconda3\lib\site-packages\spyder\utils\site\sitecustomize.py", line 102, in execfile exec(compile(f.read(), filename, 'exec'), namespace)

    File "C:/Users/acer/Desktop/python-sonu/programms/rectangular_slit.py", line 15, in F.add(RectangularSlit(width= 1mm, height=5cm,x0=0,y0=0))

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\monochromatic_simulator.py", line 51, in add self.E = optical_element.get_E(self.E, self.xx, self.yy, self.λ)

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\diffractive_elements\diffractive_element.py", line 18, in get_E return E*self.get_transmittance(xx, yy, λ)

    File "C:\Users\acer\Anaconda3\lib\site-packages\diffractsim\diffractive_elements\rectangular_slit.py", line 25, in get_transmittance bd.ones_like(self.xx), bd.zeros_like(self.xx))

    AttributeError: 'RectangularSlit' object has no attribute 'xx rectangular_slit.zip '

    opened by Abhisek1300 2
  • How to simulate Fourier Transform at the Focal Plane (when input_distance = f)

    How to simulate Fourier Transform at the Focal Plane (when input_distance = f)

    Hi, Thank you for your fantastic work.

    I have implemented the lens system as given in this script. I also followed your article as well.

    When I set up input_distance = output_distance = focal_length= 25cm, Ideally I should get the Fourier Transform at the output. But the implementation does not give that. Could you please guide me on how I can get that?

    Input field (intensity) image

    What I got from the simulation (I checked for multiple scale factors in scale_propagation function (in this script). Below are images for scale_factor= 30) image

    What should I get (Fourier Transform) image image

    opened by udithhaputhanthri 1
  • Two visualization questions

    Two visualization questions

    I have two questions about visualization which are:

    1. I would like to get full longitudinal profile plot for a big lens (in 60 cm wide) but the plot_longitudinal_profile_colors function trimmed it on y axis. How could I deal with this kind of issue?
    2. Is there any code available to create an animation of intensity plots?

    Thanks, Irfan

    opened by irfanimaduddin 1
  • Rectangular Slit with CUDA

    Rectangular Slit with CUDA

    Running a rectungular slit with CUDA backend gives me the following error:

    Traceback (most recent call last): File "C:/Users/ethan/Documents/PycharmProjects/diffraction/examples/circular_aperture_lens.py", line 27, in F.add_rectangular_slit(x0=0, y0=0, width=1.5 * mm, height=1.5 * mm) File "C:\Users\ethan\Documents\PycharmProjects\diffraction\venv\lib\site-packages\diffractsim\monochromatic_simulator.py", line 68, in add_rectangular_slit [bd.ones(self.E.shape), bd.zeros(self.E.shape)], File "C:\Users\ethan\Documents\PycharmProjects\diffraction\venv\lib\site-packages\cupy_indexing\indexing.py", line 199, in select if cond.dtype.type is not cupy.bool_: AttributeError: 'bool' object has no attribute 'dtype'

    Can be fixed by modifying assignment if the 't' variable in the 'add_rectangular_slit' function.

    t = bd.select(
                [
                    ((self.xx > (x0 - width / 2)) & (self.xx < (x0 + width / 2)))
                    & ((self.yy > (y0 - height / 2)) & (self.yy < (y0 + height / 2))),
                    bd.full(self.E.shape, True, dtype=bool)
                ],
                [bd.ones(self.E.shape), bd.zeros(self.E.shape)],
            )
    
    opened by ethan-becker-fathom 1
  • Corrected errors in input+output plane coordinate systems and added lens example

    Corrected errors in input+output plane coordinate systems and added lens example

    There is a mistake in the coordinate system definitions of the current version which means that for example a lens does not focus exactly on the optical axis. If you try and run the supplied example in an old version of the code you would get:

    old_image old_PSF

    And with the new version you would instead get the following on-axis responses:

    new_image new_PSF

    P.S. I have also updated the calculation of kz in order to include non-propagating modes. If not, the supplied example will fail

    P.P.S. Changes only made to the monochromatic simulator

    opened by villadsegede 1
  • Refactor user and developer experience

    Refactor user and developer experience

    Hello @rafael-fuente, I really enjoyed your simulations! I am creating a pull request with features that will allow for easier user and developer experience when working with your project.

    opened by irahorecka 1
  • Code documentation

    Code documentation

    The description of the functions are clear but I had a hard time understanding how they worked. If you want, I can help you create even better documentation in code.

    opened by GuilhermeMonteiroPeixoto 0
  • Lens aberration function

    Lens aberration function

    I noticed that the lens aberration attribute was not being referenced correctly (missing self.). I also added the missing wavelength dependence and a simple example showing how it can be used.

    opened by danielbrown2 0
  • ApertureFromImage() seems to always assume the image is in linear sRGB

    ApertureFromImage() seems to always assume the image is in linear sRGB

    Hi,

    I think this tool you made is awesome, and I really enjoy playing with it. My only "complaint" is that when using a grayscale image as an aperture, the result at a dstance of 0 look different from the original image. I'm guessing that it's because F.get_colors() correctly converts the output image to sRGB, but when loading the aperture image with ApertureFromImage(), the image isn't correctly converted to linear.

    Editing the grayscale conversion in aperture_from_image.py this way seems to fix it: t = 0.2990 * np.power(imgRGB[:, :, 0],2.2) + 0.5870 * np.power(imgRGB[:, :, 1],2.2) + 0.1140 * np.power(imgRGB[:, :, 2],2.2)

    opened by stduhpf 0
  • Request for CPU multi core processing support

    Request for CPU multi core processing support

    First, like your work, and I would like to make it better.

    I would be nice to have support for multi-core processing. I know that numpy runs fast on the cpu but cannot use more then one core. Also not all computers can use well the gpu and installing and using cupy is not straight foreword and easy as numpy.

    On the side, there are module that able to use multi core for mathematical operation like numba. In addition, its installation is simple and it is easy to use.

    I would like to help with that and it seems that the change for the code would not be so big. Thanks

    opened by eitan-davis 0
Releases(v2.2.3)
  • v2.2.3(Feb 18, 2022)

    Diffractsim is a flexible and easy-to-use Python diffraction simulator that focuses on visualizing physical optics phenomena.

    The simulator provides scalar diffraction techniques for full-optical path propagation, an interface for simulation setup, and several plotting options, counting with CIE Color matching functions for accurate color reproduction.

    It supports lenses, phase hologram generation, and GPU acceleration.

    Source code(tar.gz)
    Source code(zip)
    diffractsim-2.2.3.zip(1.90 MB)
Owner
Rafael de la Fuente
Rafael de la Fuente
Script to quickly get the metrics from Github repos to analyze.

commit-prefix-analysis Script to quickly get the metrics from Github repos to analyze. Setup Install the Github CLI. You'll know its working when runn

David Carpenter 1 Dec 17, 2022
Python library for the Unmand APIs.

Unmand Python SDK This is a simple package to aid in consuming the Unmand APIs. For more help, see our docs. Getting Started Create virtual environmen

Unmand 4 Jul 22, 2022
CBLang is a programming language aiming to fix most of my problems with Python

CBLang A bad programming language made in Python. CBLang is a programming language aiming to fix most of my problems with Python (this means that you

Chadderbox 43 Dec 22, 2022
Similarity checking of sign languages

Similarity checking of sign languages This repository checks for similarity betw

Tonni Das Jui 1 May 13, 2022
Meaningful and minimalist release notes for developers

Managing manual release notes is hard. Therefore, everyone tends to generate release notes from commit messages. But, you won't get a meaningful release note at the end.

codezri 31 Dec 30, 2022
The worst and slowest programming language you have ever seen

VenumLang this is a complete joke EXAMPLE: fizzbuzz in venumlang x = 0

Venum 7 Mar 12, 2022
Chemical Analysis Calculator, with full solution display.

Chemicology Chemical Analysis Calculator, to solve problems efficiently by displaying whole solution. Go to releases for downloading .exe, .dmg, Linux

Muhammad Moazzam 2 Aug 06, 2022
A general purpose low level programming language written in Python.

A general purpose low level programming language written in Python. Basal is an easy mid level programming language compiling to C. It has an easy syntax, similar to Python, Rust etc.

Snm Logic 6 Mar 30, 2022
The tool helps to find hidden parameters that can be vulnerable or can reveal interesting functionality that other hunters miss.

The tool helps to find hidden parameters that can be vulnerable or can reveal interesting functionality that other hunters miss. Greater accuracy is achieved thanks to the line-by-line comparison of

197 Nov 14, 2022
Python script to commit to your github for a perfect commit streak. This is purely for education purposes, please don't use this script to do bad stuff.

Daily-Git-Commit Commit to repo every day for the perfect commit streak Requirments pip install -r requirements.txt Setup Download this repository. Cr

JareBear 34 Dec 14, 2022
YBlade - Import QBlade blades into Fusion 360

YBlade - Import QBlade blades into Fusion 360 Simple script for Fusion 360 that takes QBlade blade description and constructs the blade: Usage First,

Jan Mrázek 37 Sep 25, 2022
Never see escaped bytes in output.

Uniout It makes Python print the object representation in readable chars instead of the escaped string. Example from pprint import pprint lang

Mosky Liu 156 Oct 21, 2022
Fried Chicken Programming Language

Fried-Chicken Fried Chicken Programming Language How To Run Once downloaded and opened, choose any file for code. Any file extensions work. Just make

Attachment Studios 9 Jul 11, 2022
Ml-design-patterns - Source code accompanying O'Reilly book: Machine Learning Design Patterns

This is not an official Google product ml-design-patterns Source code accompanying O'Reilly book: Title: Machine Learning Design Patterns Authors: Val

Google Cloud Platform 1.5k Jan 05, 2023
Py4J enables Python programs to dynamically access arbitrary Java objects

Py4J Py4J enables Python programs running in a Python interpreter to dynamically access Java objects in a Java Virtual Machine. Methods are called as

Barthelemy Dagenais 1k Jan 02, 2023
Скрипт позволяет выгрузить участников чатов/каналов(по чату для комментариев) и сообщения в различные форматы файлов.

TG-Parser Парсер участников и сообщений из ТГ-Чатов и чатов для комментариев в ТГ-Каналах Возможности Выгрузка участников групп/каналов(по чату для ко

50 Jan 06, 2023
A student information management system in Python

Student-information-management-system 本项目是一个学生信息管理系统,这个项目是用Python语言实现的,也实现了图形化界面的显示,同时也实现了管理员端,学生端两个登陆入口,同时底层使用的是Redis做的数据持久化。 This project is a stude

liuyunfei 7 Nov 15, 2022
A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

A parser of Windows Defender's DetectionHistory forensic artifact, containing substantial info about quarantined files and executables.

Jordan Klepser 101 Oct 30, 2022
Simple Python Gemini browser with nice formatting

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

Sarah Taube 2 Nov 21, 2021
Rufus port to linux, writed on Python3

Rufus-for-Linux Rufus port to linux, writed on Python3 Программа будет иметь тот же интерфейс что и оригинал, и тот же функционал. Программа создается

6 Jan 07, 2022