Code snippets created for the PyTorch discussion board

Overview

PyTorch misc

Collection of code snippets I've written for the PyTorch discussion board.

All scripts were testes using the PyTorch 1.0 preview and torchvision 0.2.1.

Additional libraries, e.g. numpy or pandas, are used in a few scripts.

Some scripts might be a good starter to create a tutorial.

Overview

  • accumulate_gradients - Comparison of accumulated gradients/losses to vanilla batch update.
  • adaptive_batchnorm- Adaptive BN implementation using two additional parameters: out = a * x + b * bn(x).
  • adaptive_pooling_torchvision - Example of using adaptive pooling layers in pretrained models to use different spatial input shapes.
  • batch_norm_manual - Comparison of PyTorch BatchNorm layers and a manual calculation.
  • change_crop_in_dataset - Change the image crop size on the fly using a Dataset.
  • channel_to_patches - Permute image data so that channel values of each pixel are flattened to an image patch around the pixel.
  • conv_rnn - Combines a 3DCNN with an RNN; uses windowed frames as inputs.
  • csv_chunk_read - Provide data chunks from continuous .csv file.
  • densenet_forwardhook - Use forward hooks to get intermediate activations from densenet121. Uses separate modules to process these activations further.
  • edge_weighting_segmentation - Apply weighting to edges for a segmentation task.
  • image_rotation_with_matrix - Rotate an image given an angle using 1.) a nested loop and 2.) a rotation matrix and mesh grid.
  • LocallyConnected2d - Implementation of a locally connected 2d layer.
  • mnist_autoencoder - Simple autoencoder for MNIST data. Includes visualizations of output images, intermediate activations and conv kernels.
  • mnist_permuted - MNIST training using permuted pixel locations.
  • model_sharding_data_parallel - Model sharding with DataParallel using 2 pairs of 2 GPUs.
  • momentum_update_nograd - Script to see how parameters are updated when an optimizer is used with momentum/running estimates, even if gradients are zero.
  • pytorch_redis - Script to demonstrate the loading data from redis using a PyTorch Dataset and DataLoader.
  • shared_array - Script to demonstrate the usage of shared arrays using multiple workers.
  • shared_dict - Script to demonstrate the usage of shared dicts using multiple workers.
  • unet_demo - Simple UNet demo.
  • weighted_sampling - Usage of WeightedRandomSampler using an imbalanced dataset with class imbalance 99 to 1.

Feedback is very welcome!

Owner
Deep Learning Frameworks @NVIDIA
A simple way to train and use PyTorch models with multi-GPU, TPU, mixed-precision

🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.

Hugging Face 3.5k Jan 08, 2023
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
Pytorch implementation of Distributed Proximal Policy Optimization

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 164 Jan 05, 2023
Pretrained EfficientNet, EfficientNet-Lite, MixNet, MobileNetV3 / V2, MNASNet A1 and B1, FBNet, Single-Path NAS

(Generic) EfficientNets for PyTorch A 'generic' implementation of EfficientNet, MixNet, MobileNetV3, etc. that covers most of the compute/parameter ef

Ross Wightman 1.5k Jan 01, 2023
Reformer, the efficient Transformer, in Pytorch

Reformer, the Efficient Transformer, in Pytorch This is a Pytorch implementation of Reformer https://openreview.net/pdf?id=rkgNKkHtvB It includes LSH

Phil Wang 1.8k Jan 06, 2023
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch.

Tez: a simple pytorch trainer NOTE: Currently, we are not accepting any pull requests! All PRs will be closed. If you want a feature or something does

abhishek thakur 1.1k Jan 04, 2023
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).

Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of

Karen Ullrich 190 Dec 30, 2022
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
A PyTorch implementation of L-BFGS.

PyTorch-LBFGS: A PyTorch Implementation of L-BFGS Authors: Hao-Jun Michael Shi (Northwestern University) and Dheevatsa Mudigere (Facebook) What is it?

Hao-Jun Michael Shi 478 Dec 27, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

1k Dec 28, 2022
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
PyTorch toolkit for biomedical imaging

farabio is a minimal PyTorch toolkit for out-of-the-box deep learning support in biomedical imaging. For further information, see Wikis and Docs.

San Askaruly 47 Dec 28, 2022
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that all

Preferred Networks, Inc. 96 Nov 28, 2022
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
270 Dec 24, 2022