PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

Overview

PSTR (CVPR2022)

  • This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)".
  • End-to-end one-step person search with Transformers, which does not requre NMS post-processing.
  • Pre-trained models with ResNet50, ResNet50-DCN, and PVTv2b2.
  • Curves of different methods on CUHK under different gallery sizes (plot_cuhk.py). If you want to add new results, please feel free to contact us.

Installation

  • We install this project using cuda11.1 and PyTorch1.8.0 (or PyTorch1.9.0) as follows.
# Download this project
git clone https://github.com/JialeCao001/PSTR.git

# Create a new conda enviroment for PSTR
conda create -n pstr python=3.7 -y
conda activate pstr
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
#conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

# Comiple mmcv, which has been included in this project
cd PSTR/mmcv
MMCV_WITH_OPS=1 pip install -e .

# Comiple this project 
cd PSTR
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"
pip install sklearn
  • If you have the problem local variable 'beta1' referenced before assignment with PyTorch1.8, add one table space in L110 of optim/adamw.py

Train and Inference

Datasets and Annotations
Train with a single GPU
python tools/train.py ${CONFIG_FILE} --no-validate
Test with a single GPU
PRW: sh run_test_prw.sh 
CUHK: sh run_test_cuhk.sh  
  • If you want to output the results of different models, please change CONFIGPATH, MODELPATH, OUTPATH for diffferent models

Results

We provide some models with different backbones and results on PRW and CUHK-SYSU datasets, which have a little difference to CVPR version due to jitter.

name dataset backbone mAP top-1 mAP+ top-1+ download
PSTR PRW PVTv2-B2 57.46 90.57 58.07 92.03 model
PSTR PRW ResNet50 50.03 88.04 50.64 89.94 model
PSTR PRW ResNet50-DCN 51.09 88.33 51.62 90.13 model
PSTR CUHK-SYSU PVTv2-B2 95.31 96.28 95.78 96.83 model
PSTR CUHK-SYSU ResNet50 93.55 94.93 94.16 95.48 model
PSTR CUHK-SYSU ResNet50-DCN 94.22 95.28 94.90 95.97 model
  • All the models are based on multi-scale training and all the results are based on single-scale inference.

  • + indicates adding a re-scoring module during evaluation, where we modify the final matching score as the weighted score of CBGM score and originial matching scores.

Citation

If the project helps your research, please cite this paper.

@article{Cao_PSTR_CVPR_2022,
  author =       {Jiale Cao and Yanwei Pang and Rao Muhammad Anwer and Hisham Cholakkal and Jin Xie and Mubarak Shah and Fahad Shahbaz Khan},
  title =        {PSTR: End-to-End One-Step Person Search With Transformers},
  journal =      {Proc. IEEE Conference on Computer Vision and Pattern Recognition},
  year =         {2022}
}

Acknowledgement

Many thanks to the open source codes: mmdetection, AlignPS, and SeqNet.

The source code and dataset for the RecGURU paper (WSDM 2022)

RecGURU About The Project Source code and baselines for the RecGURU paper "RecGURU: Adversarial Learning of Generalized User Representations for Cross

Chenglin Li 17 Jan 07, 2023
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks

Subnet Replacement Attack: Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks Official implementation of paper Towards Practic

Xiangyu Qi 8 Dec 30, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022