Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

Related tags

Deep LearningArtFlow
Overview

ArtFlow

Official PyTorch implementation of the paper:

ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows
Jie An*, Siyu Huang*, Yibing Song, Dejing Dou, Wei Liu and Jiebo Luo
CVPR 2021

ArtFlow is a universal style transfer method that consists of reversible neural flows and an unbiased feature transfer module. ArtFlow adopts a projection-transfer-reversion scheme instead of the encoder-transfer-decoder to avoid the content leak issue of existing style transfer methods and consequently achieves unbiased style transfer in continuous style transfer.

Style Transfer Examples

Style Transfer Examples

Artistic Portrait Style Transfer Examples

We also train a model with the FFHQ dataset as the content and Metfaces as the style to convert a portrait photo into an artwork.

Portrait Style Transfer

Content Leak Phenomenon

When we continuously perform style transfer with a style transfer algorithm, the produced result will gradually lose the detail of the content image. The code in this repository solves this problem.

Content Leak Phenomenons

Dependencies

  • Python=3.6
  • PyTorch=1.8.1
  • CUDA=10.2
  • cuDNN=7.6
  • Scipy=1.5.2

Optionally, if you are a conda user, you can execute the following command in the directory of this repository to create a new environment with all dependencies installed.

conda env create -f environment.yaml

Pretrained Models

If you want to use pretrained models to perform style transfer, please download the pre-trained models in Google Drive and put the downloaded experiments directory under the root of this repository. Then execute the following command in the root of the repository.

Style Transfer

The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 -u test.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN
  • content_dir: path for the content images. Default is data/content.
  • style_dir: path for the style images. Default is data/style.
  • size: image size for style transfer. Default is 256.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • decoder: path for the pre-trained model, if you let the --operator wct, then you should load the pre-trained model with --decoder experiments/ArtFlow-WCT/glow.pth. Otherwise, if you use AdaIN, you should set --decoder experiments/ArtFlow-AdaIN/glow.pth. If you want to use this code for portrait style transfer, please set --operator adain and --decoder experiments/ArtFlow-AdaIN-Portrait/glow.pth.
  • output: path of the output directory. This code will produce a style transferred image for every content-style combination in your designated directories.

Continuous Style Transfer

We provide a script to make style transfer with a content and a series of style images to demonstrate that our code can avoid the content leak issue. The command with the default settings is:

CUDA_VISIBLE_DEVICES=0 python3 continuous_transfer.py --content_dir data/content --style_dir data/style --size 256 --n_flow 8 --n_block 2 --operator adain --decoder experiments/ArtFlow-AdaIN/glow.pth --output output_ArtFlow-AdaIN

All parameters are the same as the style transfer part above.

Testing

To test the style transfer performance of the pre-trained model with the given content and style images under data directory. Please run the following commands:

ArtFlow + AdaIN

bash test_adain.sh

The style transfer results will be saved in output_ArtFlow-AdaIN.

ArtFlow + WCT

bash test_wct.sh

The style transfer results will be saved in output_ArtFlow-WCT.

Training

To train ArtFlow by yourself. Please firstly download the Imagenet pre-trained VGG19 model from Google Drive and put the downloaded models directory under the root of the repository. Then run the following commands.

CUDA_VISIBLE_DEVICES=0,1 python3 -u train.py --content_dir $training_content_dir --style_dir $training_style_dir --n_flow 8 --n_block 2 --operator adain --save_dir $param_save_dir --batch_size 4
  • content_dir: path for the training content images.
  • style_dir: path for the training style images.
  • n_flow: number of the flow module used per block in the backbone network. Default is 8.
  • n_block: number of the block used in the backbone network. Default is 2.
  • operator: style transfer module. Options: [adain, wct, decorator].
  • save_dir: path for saving the trained model.

The datasets we used for training in our experiments are as follows:

Model Content Style
General MS_COCO WikiArt
Portrait FFHQ Metfaces

If you want to reproduce the model in our experiments. Here are two bash scripts with our settings:

bash train_adain.sh
bash train_wct.sh

Please note that you may need to change the path of the train content and style datasets in the above two bash scripts.

Citation

@inproceedings{artflow2021,
 title={ArtFlow: Unbiased image style transfer via reversible neural flows},
 author={An, Jie and Huang, Siyu and Song, Yibing and Dou, Dejing and Liu, Wei and Luo, Jiebo},
 booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
 year={2021}
}

Acknowledgement

We thank the great work glow-pytorch, AdaIN and WCT as we benefit a lot from their codes and papers.

Contact

If you have any questions, please do not hesitate to contact [email protected] and [email protected].

Owner
writing toy code...
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Neighborhood Reconstructing Autoencoders

Neighborhood Reconstructing Autoencoders The official repository for Neighborhood Reconstructing Autoencoders (Lee, Kwon, and Park, NeurIPS 2021). T

Yonghyeon Lee 24 Dec 14, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Learning Continuous Image Representation with Local Implicit Image Function

LIIF This repository contains the official implementation for LIIF introduced in the following paper: Learning Continuous Image Representation with Lo

Yinbo Chen 1k Dec 25, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022