Python rubik's cube solver

Overview

py-rubik_solver

Python solver for a rubik's cube

This program makes a 3D representation of a rubiks cube and solves it step by step.

solving the cube image

Usage

To use this program you need to execute the following commands

  • For 3D visualizations:

    python visualizer.py

  • For statistics:

    python stats.py

Requirements

To use this program you need to install python 3.8.10 or later (although it will probably work on python 3.7) You will also need a recent version of numpy and vpython 7 or later, those can be installed with:

pip install numpy vpython

Implementation

This project is separated in different files, each implementing a different functionality. The content and functionality of each of these files is the following:

configs.py

This file contains general configuration parameters mostly related to the visual representation of the cube:

  • The default colors
  • The number of fps
  • The time taken to reproduce each move
  • Time to wait between moves
  • Speed factor

cube.py

This file contains the Cube class, which implements a data structure for storing the pieces of the cube and some functions for rotating the faces of the cube. It also implements the possibility to shuffle the cube on creation and the possibility of recording a list of moves made in the cube, this is used for generating a solution.

The main functions implemented in this class are:

  • move(move, n=1, record=True): where move should be a string representing the face to move and n is the number of 90 degree rotations to perform (2 is half turn and 3 or -1 is a turn to the other side). The codes used for the move are:

    • "U", "F", "R", "B", "L", "D" for individual faces.
    • "UD", "FB", "RL" for the middle faces.
    • "UU", "FF", "RR" for rotations of the whole cube along this axis.
  • rotate(axis, n=1): this has the same effect as using move with "UU", "FF", "RR" but these moves are never recorded.

  • is_solved(): checks whether the cube equals the solved cube. Keep in mind that this function will return False even if the cube is solved but faces a different way.

  • copy(): creates a deep_copy of the cube. The copy is completely independent of the original cube.

cube_3d.py

This file implements the Cube3D class, which directly inherits from the Cube class. This class overrides the __init__ and move functions to first create all the cubes necessary to represent the rubiks cube in 3D and then animate them each time any face is moved.

cube_solver.py

This file implements the CubeSolver class, which acts as an abstract class for all the other solving algorithms. It only takes care of taking some measures for statistics.

simple_solver.py

This is the first solving algorithm implemented, it's the usual beginer algorithm for anyone learning how to solve the rubiks cube. It's implemented on a really naive way, and it's far from optimal in terms of the number of steps of the solution. It was just a proof of concept and my goal is to implement a better, more efficient version of this class in the future.

In my personal computer this algorithm takes 1.78 ms on average to compute a solution, and the solutions have 205.6 steps on average. Again these results are far from good, but this was just a proof of concept.

The process of the algorithm is separated in different steps, which are:

  • solve_first_cross: solves the cross on the UP face
  • solve_first_corners: solves the corners on the UP face
  • solve_second_row: solves the second "crown" or the second row
  • solve_second_cross: creates a cross on the DOWN face
  • orientate_2nd_cross: positions correctly the pieces inside the cross on the DOWN face
  • solve_second_corners: positions correctly the corners in the DOWN face
  • orientate_2nd_corners: rotates correctly the corners in the DOWN face
  • reorient_cube: rotates the whole cube so that the UP face is facing up and the FRONT face if facing front

stats.py

This file is used to compute some statistics of the cube solutions. At this point this file is used to compute:

  • The average time taken to generate a solution
  • The average number of steps of the generated solutions
  • Some data of the solving process

Keep in mind the data computed will probably change in the future.

util.py

In this file we store different lists and dictionaries used in the project such as a solved cube structure, a list of the directions, a function for generating random moves, ...

visualizer.py

This file is used to launch a 3D representation of the solving process of the cube. It also contains a function to check the progress of the solving algorithm.

Notes

In the future I'm planing to make more solving algorithms as well as an implementation for a physical robot that solves a given cube.

Use this code as you wish, just let me know if you do, I'll love to hear what you are up to!

If you have any doubts/comments/suggestions/anything please let my know via email at [email protected] or at the email in my profile.

Owner
Pablo QB
I'm a student of the double degree on Computer Engineering and Mathematics at UAM university. Here I upload some of my personal proyects just for fun.
Pablo QB
かの有名なあの東方二次創作ソング、「bad apple!」のMVをPythonでやってみたって話

bad apple!! 内容 このプログラムは、bad apple!(feat. nomico)のPVをPythonを用いて再現しよう!という内容です。 実はYoutube並びにGithub上に似たようなプログラムがあったしなんならそっちの方が結構良かったりするんですが、一応公開しますw 使い方 こ

赤紫 8 Jan 05, 2023
color detection using python

colordetection color detection using python In this color detection Python project, we are going to build an application through which you can automat

Ruchith Kumar 1 Nov 04, 2021
This repository summarized computer vision theories.

This repository summarized computer vision theories.

3 Feb 04, 2022
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)

TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep

Yukang Wang 101 Dec 12, 2022
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
Awesome Spectral Indices in Python.

Awesome Spectral Indices in Python: Numpy | Pandas | GeoPandas | Xarray | Earth Engine | Planetary Computer | Dask GitHub: https://github.com/davemlz/

David Montero Loaiza 98 Jan 02, 2023
keras复现场景文本检测网络CPTN: 《Detecting Text in Natural Image with Connectionist Text Proposal Network》;欢迎试用,关注,并反馈问题...

keras-ctpn [TOC] 说明 预测 训练 例子 4.1 ICDAR2015 4.1.1 带侧边细化 4.1.2 不带带侧边细化 4.1.3 做数据增广-水平翻转 4.2 ICDAR2017 4.3 其它数据集 toDoList 总结 说明 本工程是keras实现的CPTN: Detecti

mick.yi 107 Jan 09, 2023
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
Tools for manipulating and evaluating the hOCR format for representing multi-lingual OCR results by embedding them into HTML.

hocr-tools About About the code Installation System-wide with pip System-wide from source virtualenv Available Programs hocr-check -- check the hOCR f

OCRopus 285 Dec 08, 2022
Driver Drowsiness Detection with OpenCV & Dlib

In this project, we have built a driver drowsiness detection system that will detect if the eyes of the driver are close for too long and infer if the driver is sleepy or inactive.

Mansi Mishra 4 Oct 26, 2022
OpenGait is a flexible and extensible gait recognition project

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Some codes from PyImageSearch course's and external projects.

👨‍💻 Some codes and projects 👨‍💻 💡 Technologies 📜 Projects 📍 Chrome Dinosaur Controller 📦 Script 📍 Coins Counter 📦 Script 🤓 Author Lucas Biv

Lucas Bivar 25 Oct 24, 2021
Turn images of tables into CSV data. Detect tables from images and run OCR on the cells.

Table of Contents Overview Requirements Demo Modules Overview This python package contains modules to help with finding and extracting tabular data fr

Eric Ihli 311 Dec 24, 2022
Pixie - A full-featured 2D graphics library for Python

Pixie - A full-featured 2D graphics library for Python Pixie is a 2D graphics library similar to Cairo and Skia. pip install pixie-python Features: Ty

treeform 65 Dec 30, 2022
Repository for playing the computer vision apps: People analytics on Raspberry Pi.

play-with-torch Repository for playing the computer vision apps: People analytics on Raspberry Pi. Tools Tested Hardware RasberryPi 4 Model B here, RA

eMHa 1 Sep 23, 2021
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023