Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

Overview

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech

arXiv | GitHub Stars | downloads | Hugging Face | 中文文档

This repository is the official PyTorch implementation of our IJCAI-2022 paper, in which we propose SyntaSpeech for syntax-aware non-autoregressive Text-to-Speech.



Our SyntaSpeech is built on the basis of PortaSpeech (NeurIPS 2021) with three new features:

  1. We propose Syntactic Graph Builder (Sec. 3.1) and Syntactic Graph Encoder (Sec. 3.2), which is proved to be an effective unit to extract syntactic features to improve the prosody modeling and duration accuracy of TTS model.
  2. We introduce Multi-Length Adversarial Training (Sec. 3.3), which could replace the flow-based post-net in PortaSpeech, speeding up the inference time and improving the audio quality naturalness.
  3. We support three datasets: LJSpeech (single-speaker English dataset), Biaobei (single-speaker Chinese dataset) , and LibriTTS (multi-speaker English dataset).

Environments

conda create -n synta python=3.7
condac activate synta
pip install -U pip
pip install Cython numpy==1.19.1
pip install torch==1.9.0 
pip install -r requirements.txt
# install dgl for graph neural network, dgl-cu102 supports rtx2080, dgl-cu113 support rtx3090
pip install dgl-cu102 dglgo -f https://data.dgl.ai/wheels/repo.html 
sudo apt install -y sox libsox-fmt-mp3
bash mfa_usr/install_mfa.sh # install force alignment tools

Run SyntaSpeech!

Please follow the following steps to run this repo.

1. Preparation

Data Preparation

You can directly use our binarized datasets for LJSpeech and Biaobei. Download them and unzip them into the data/binary/ folder.

As for LibriTTS, you can download the raw datasets and process them with our data_gen modules. Detailed instructions can be found in dosc/prepare_data.

Vocoder Preparation

We provide the pre-trained model of vocoders for three datasets. Specifically, Hifi-GAN for LJSpeech and Biaobei, ParallelWaveGAN for LibriTTS. Download and unzip them into the checkpoints/ folder.

2. Training Example

Then you can train SyntaSpeech in the three datasets.

cd <the root_dir of your SyntaSpeech folder>
export PYTHONPATH=./
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset # training in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset # training in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset # training in LibriTTS

3. Tensorboard

tensorboard --logdir=checkpoints/lj_synta
tensorboard --logdir=checkpoints/biaobei_synta
tensorboard --logdir=checkpoints/libritts_synta

4. Inference Example

CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/lj/synta.yaml --exp_name lj_synta --reset --infer # inference in LJSpeech
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name biaobei_synta --reset --infer # inference in Biaobei
CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config egs/tts/biaobei/synta.yaml --exp_name libritts_synta --reset ---infer # inference in LibriTTS

Audio Demos

Audio samples in the paper can be found in our demo page.

We also provide HuggingFace Demo Page for LJSpeech. Try your interesting sentences there!

Citation

@article{ye2022syntaspeech,
  title={SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech},
  author={Ye, Zhenhui and Zhao, Zhou and Ren, Yi and Wu, Fei},
  journal={arXiv preprint arXiv:2204.11792},
  year={2022}
}

Acknowledgements

Our codes are based on the following repos:

Comments
  • pinyin preprocess problem

    pinyin preprocess problem

    005804 你当#1我傻啊#3?脑子#1那么大#2怎么#1塞进去#4? ni3 dang1 wo2 sha3 a5 nao3 zi5 na4 me5 da4 zen3 me5 sai1 jin4 qu4

    txt_struct=[['', ['']], ['你', ['n', 'i3']], ['当', ['d', 'ang1']], ['我', ['uo3']], ['傻', ['sh', 'a3']], ['啊', ['a', '?', 'n', 'ao3']], ['?', ['z', 'i']], ['脑', ['n', 'a4']], ['子', ['m', 'e']], ['那', ['d', 'a4']], ['么', ['z', 'en3']], ['大', ['m', 'e']], ['怎', ['s', 'ai1']], ['么', ['j', 'in4']], ['塞', ['q', 'v4', '?']], ['进', []], ['去', []], ['?', []], ['', ['']]]

    ph_gb_word=['', 'n_i3', 'd_ang1', 'uo3', 'sh_a3', 'a_?n_ao3', 'z_i', 'n_a4', 'm_e', 'd_a4', 'z_en3', 'm_e', 's_ai1', 'j_in4', 'q_v4?', '', '', '', '']

    what is 'a_?_n_ao3'

    in the mfa_dict it appears ch_a1_d_ou1 ,a_?_n_ao3 and so on

    opened by windowxiaoming 2
  • discriminator output['y_c'] never used

    discriminator output['y_c'] never used

    Discriminator's output['y_c'] never used, and never calculated in discriminator forward func. What does this variable mean? https://github.com/yerfor/SyntaSpeech/blob/5b07439633a3e714d2a6759ea4097eb36d6cd99a/tasks/tts/synta.py#L81

    opened by mayfool 2
  • A question of KL divergence calculation

    A question of KL divergence calculation

    In modules/tts/portaspeech/fvae.py, SyntaFVAE compute loss_kl (line 121) , Can someone help explain why loss_kl = ((logqx - logpx) * nonpadding_sqz).sum() / nonpadding_sqz.sum() / logqx.shape[1],I think loss_kl should be compute by loss_kl = logqx.exp()*(logqx - logpx) I would be very grateful if you could reply to me!

    opened by JiaYK 2
  • mfa for multi speaker.

    mfa for multi speaker.

    In the code, group MFA inputs for better parallelism. For multi speaker, it maybe go wrong. For input g_uang3 zh_ou1 n_v3 d_a4 x_ve2 sh_eng1 d_eng1 sh_an1 sh_i1 l_ian2 s_i4 t_ian1 j_ing3 f_ang1 zh_ao3 d_ao4 i2 s_i4 n_v3 sh_i1. The TexGrid is

    	item [1]:
    		class = "IntervalTier"
    		name = "words"
    		xmin = 0.0
    		xmax = 9.4444
    		intervals: size = 56
    			intervals [1]:
    				xmin = 0
    				xmax = 0.5700000000000001
    				text = ""
    			intervals [2]:
    				xmin = 0.5700000000000001
    				xmax = 0.61
    				text = "eng"
    			intervals [3]:
    				xmin = 0.61
    				xmax = 0.79
    				text = "s_an1"
    			intervals [4]:
    				xmin = 0.79
    				xmax = 0.89
    				text = "eng"
    			intervals [5]:
    				xmin = 0.89
    				xmax = 1.06
    				text = "i1"
    			intervals [6]:
    				xmin = 1.06
    				xmax = 1.24
    				text = "eng"
    			intervals [7]:
    				xmin = 1.24
    				xmax = 1.3
    				text = ""
    			intervals [8]:
    				xmin = 1.3
    				xmax = 1.36
    				text = "s_an1"
    			intervals [9]:
    				xmin = 1.36
    				xmax = 1.42
    				text = ""
    			intervals [10]:
    				xmin = 1.42
    				xmax = 1.49
    				text = "eng"
    			intervals [11]:
    				xmin = 1.49
    				xmax = 1.67
    				text = "s_i4"
    			intervals [12]:
    				xmin = 1.67
    				xmax = 1.78
    				text = "eng"
    			intervals [13]:
    				xmin = 1.78
    				xmax = 1.91
    				text = ""
    			intervals [14]:
    				xmin = 1.91
    				xmax = 1.96
    				text = "er4"
    			intervals [15]:
    				xmin = 1.96
    				xmax = 2.06
    				text = "eng"
    			intervals [16]:
    				xmin = 2.06
    				xmax = 2.19
    				text = ""
    			intervals [17]:
    				xmin = 2.19
    				xmax = 2.35
    				text = "i1"
    			intervals [18]:
    				xmin = 2.35
    				xmax = 2.53
    				text = "eng"
    			intervals [19]:
    				xmin = 2.53
    				xmax = 3.03
    				text = "i1"
    			intervals [20]:
    				xmin = 3.03
    				xmax = 3.42
    				text = "eng"
    			intervals [21]:
    				xmin = 3.42
    				xmax = 3.48
    				text = "i1"
    			intervals [22]:
    				xmin = 3.48
    				xmax = 3.6
    				text = ""
    			intervals [23]:
    				xmin = 3.6
    				xmax = 3.64
    				text = "eng"
    			intervals [24]:
    				xmin = 3.64
    				xmax = 3.86
    				text = "i1"
    			intervals [25]:
    				xmin = 3.86
    				xmax = 3.99
    				text = "eng"
    			intervals [26]:
    				xmin = 3.99
    				xmax = 4.59
    				text = ""
    			intervals [27]:
    				xmin = 4.59
    				xmax = 4.869999999999999
    				text = "er4"
    			intervals [28]:
    				xmin = 4.869999999999999
    				xmax = 4.9799999999999995
    				text = "eng"
    			intervals [29]:
    				xmin = 4.9799999999999995
    				xmax = 5.1899999999999995
    				text = "s_i4"
    			intervals [30]:
    				xmin = 5.1899999999999995
    				xmax = 5.34
    				text = ""
    			intervals [31]:
    				xmin = 5.34
    				xmax = 5.43
    				text = "eng"
    			intervals [32]:
    				xmin = 5.43
    				xmax = 5.6
    				text = ""
    			intervals [33]:
    				xmin = 5.6
    				xmax = 5.76
    				text = "i1"
    			intervals [34]:
    				xmin = 5.76
    				xmax = 6.279999999999999
    				text = "eng"
    			intervals [35]:
    				xmin = 6.279999999999999
    				xmax = 6.359999999999999
    				text = "s_an1"
    			intervals [36]:
    				xmin = 6.359999999999999
    				xmax = 6.47
    				text = ""
    			intervals [37]:
    				xmin = 6.47
    				xmax = 6.6
    				text = "eng"
    			intervals [38]:
    				xmin = 6.6
    				xmax = 6.9399999999999995
    				text = "i1"
    			intervals [39]:
    				xmin = 6.9399999999999995
    				xmax = 7.039999999999999
    				text = "eng"
    			intervals [40]:
    				xmin = 7.039999999999999
    				xmax = 7.289999999999999
    				text = "s_an1"
    			intervals [41]:
    				xmin = 7.289999999999999
    				xmax = 7.369999999999999
    				text = "eng"
    			intervals [42]:
    				xmin = 7.369999999999999
    				xmax = 7.6
    				text = "s_i4"
    			intervals [43]:
    				xmin = 7.6
    				xmax = 7.699999999999999
    				text = "eng"
    			intervals [44]:
    				xmin = 7.699999999999999
    				xmax = 7.869999999999999
    				text = ""
    			intervals [45]:
    				xmin = 7.869999999999999
    				xmax = 8.049999999999999
    				text = "er4"
    			intervals [46]:
    				xmin = 8.049999999999999
    				xmax = 8.26
    				text = ""
    			intervals [47]:
    				xmin = 8.26
    				xmax = 8.299999999999999
    				text = "eng"
    			intervals [48]:
    				xmin = 8.299999999999999
    				xmax = 8.36
    				text = "s_i4"
    			intervals [49]:
    				xmin = 8.36
    				xmax = 8.389999999999999
    				text = ""
    			intervals [50]:
    				xmin = 8.389999999999999
    				xmax = 8.42
    				text = "eng"
    			intervals [51]:
    				xmin = 8.42
    				xmax = 8.45
    				text = ""
    			intervals [52]:
    				xmin = 8.45
    				xmax = 8.59
    				text = "s_an1"
    			intervals [53]:
    				xmin = 8.59
    				xmax = 8.83
    				text = ""
    			intervals [54]:
    				xmin = 8.83
    				xmax = 9.1
    				text = "eng"
    			intervals [55]:
    				xmin = 9.1
    				xmax = 9.44
    				text = "i1"
    			intervals [56]:
    				xmin = 9.44
    				xmax = 9.4444
    				text = ""
    
    opened by leon2milan 2
  • Problem with DDP

    Problem with DDP

    Hello, I have experimented on your excellent job with this repo. But I found the ddp is not effective. I wonder if the way I used is wrong?

    CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node 3 tasks/run.py --config //fs.yaml --exp_name fs_test_demo --reset

    opened by zhazl 0
Releases(v1.0.0)
Owner
Zhenhui YE
I am currently a second-year computer science Ph.D student at Zhejiang University, working on deep learning and reinforcement learning.
Zhenhui YE
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
A tool to analyze leveraged liquidity mining and find optimal option combination for hedging.

LP-Option-Hedging Description A Python program to analyze leveraged liquidity farming/mining and find the optimal option combination for hedging imper

Aureliano 18 Dec 19, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Prediction, ICCV-2021".

HF2-VAD Offcial implementation of "A Hybrid Video Anomaly Detection Framework via Memory-Augmented Flow Reconstruction and Flow-Guided Frame Predictio

76 Dec 21, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
This repository for project that can Automate Number Plate Recognition (ANPR) in Morocco Licensed Vehicles. 💻 + 🚙 + 🇲🇦 = 🤖 🕵🏻‍♂️

MoroccoAI Data Challenge (Edition #001) This Reposotory is result of our work in the comepetiton organized by MoroccoAI in the context of the first Mo

SAFOINE EL KHABICH 14 Oct 31, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022