Bayesian inference for Permuton-induced Chinese Restaurant Process (NeurIPS2021).

Overview

Permuton-induced Chinese Restaurant Process

animationMCMCepinions

Note: Currently only the Matlab version is available, but a Python version will be available soon!

This is a demo code for Bayesian nonparametric relational data analysis based on Permuton-induced Chinese Restaurant Process (NeurIPS, 2021). The key features are listed as follows:

  • Clustering based on rectangular partitioning: For an input matrix, the algorithm probabilistically searches for the row and column order and rectangular partitioning so that similar elements are clustered in each block as much as possible.
  • Infinite model complexity: There is no need to fix the suitable number of rectangle clusters in advance, which is a fundamental principle of Bayesian nonparametric machine learning.
  • Arbitrary rectangular partitioning: It can potentially obtain a posterior distribution on arbitrary rectangular partitioning with any numbers of rectangle blocks.
  • Empirically faster mixing of Markov chain Monte Carlo (MCMC) iterations: The method most closely related to this algorithm is the Baxter Permutation Process (NeurIPS, 2020). Typically, this algorithm seems to be able to mix MCMC faster than the Baxter permutation process empirically.

You will need a basic MATLAB installation with Statistics and Machine Learning Toolbox.

In a nutshell

  1. cd permuton-induced-crp
  2. run

Then, the MCMC evolution will appear like the gif animation at the top of this page. The following two items are particularly noteworthy.

  • Top center: Probabilistic rectangular partitioning of a sample matrix (irmdata\sampledata.mat ).
  • Bottom right: Posterior probability.

Interpretation of analysis results

model

The details of the visualization that will be drawn while running the MCMC iterations require additional explanation of our model. Please refer to the paper for more details. Our model, an extension of the Chinese Restaurant Process (CRP), consists of a generative probabilistic model as shown in the figure above (taken from the original paper). While the standard CRP achieves sequence clustering by the analogy of placing customers (data) on tables (clusters), our model additionally achieves array clustering by giving the random table coordinates on [0,1]x[0,1] drawn from the permuton. By viewing the table coordinates as a geometric representation of a permutation, we can use the permutation-to-rectangulation transformation to obtain a rectangular partition of the matrix.

  • Bottom center: Random coordinates of the CRP tables on [0,1]x[0,1]. The size of each table (circle) reflects the number of customers sitting at that table.
  • Top left: Diagonal rectangulation corresponding to the permutation represented by the table coordinates.
  • Bottom left: Generic rectangulation corresponding to the permutation represented by the table coordinates.

Details of usage

Given an input relational matrix, the Permuton-induced Chinese Restaurant Process can be fitted to it by a MCMC inference algorithm as follows:

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X);

or

[RowTable, ColumnTable, TableCoordinates, nesw] = test_MCMC_PCRP(X, opt);

  • X: An M by N input observation matrix. Each element must be natural numbers.
  • opt.maxiter: Maximum number of MCMC iterations.
  • opt.missingRatio: Ratio of test/(training+test) for prediction performance evaluation based on perplexity.

Reference

  1. M. Nakano, Yasuhiro Fujiwara, A. Kimura, T. Yamada, and N. Ueda, 'Permuton-induced Chinese Restaurant Process,' Advances in Neural Information Processing Systems 34 (NeurIPS 2021).

    @inproceedings{Nakano2021,
     author = {Nakano, Masahiro and Fujiwara, Yasuhiro and Kimura, Akisato and Yamada, Takeshi and Ueda, Naonori},
     booktitle = {Advances in Neural Information Processing Systems},
     pages = {},
     publisher = {Curran Associates, Inc.},
     title = {Permuton-induced Chinese Restaurant Process},
     url = {},
     volume = {34},
     year = {2021}
    }
    
Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Reusable constraint types to use with typing.Annotated

annotated-types PEP-593 added typing.Annotated as a way of adding context-specific metadata to existing types, and specifies that Annotated[T, x] shou

125 Dec 26, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Learn other languages ​​using artificial intelligence with python.

The main idea of ​​the project is to facilitate the learning of other languages. We created a simple AI that will interact with you. Just ask questions that if she knows, she will answer.

Pedro Rodrigues 2 Jun 07, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022