Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Overview

arXiv GitHub Stars visitors

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

This is the official implementation of IA-SSD (CVPR 2022), a simple and highly efficient point-based detector for 3D LiDAR point clouds. For more details, please refer to:

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds
Yifan Zhang, Qingyong Hu*, Guoquan Xu, Yanxin Ma, Jianwei Wan, Yulan Guo

[Paper] [Video]

Getting Started

Installation

a. Clone this repository

git clone https://github.com/yifanzhang713/IA-SSD.git && cd IA-SSD

b. Configure the environment

We have tested this project with the following environments:

  • Ubuntu18.04/20.04
  • Python = 3.7
  • PyTorch = 1.1
  • CUDA = 10.0
  • CMake >= 3.13
  • spconv = 1.0
    # install spconv=1.0 library
    git clone https://github.com/yifanzhang713/spconv1.0.git
    cd spconv1.0
    sudo apt-get install libboostall-dev
    python setup.py bdist_wheel
    pip install ./dist/spconv-1.0*   # wheel file name may be different
    cd ..

*You are encouraged to try to install higher versions above, please refer to the official github repository for more information. Note that the maximum number of parallel frames during inference might be slightly decrease due to the larger initial GPU memory footprint with updated Pytorch version.

c. Install pcdet toolbox.

pip install -r requirements.txt
python setup.py develop

d. Prepare the datasets.

Download the official KITTI with road planes and Waymo datasets, then organize the unzipped files as follows:

IA-SSD
├── data
│   ├── kitti
│   │   ├── ImageSets
│   │   ├── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   ├── testing
│   │   ├── calib & velodyne & image_2
│   ├── waymo
│   │   │── ImageSets
│   │   │── raw_data
│   │   │   │── segment-xxxxxxxx.tfrecord
|   |   |   |── ...
|   |   |── waymo_processed_data_v0_5_0
│   │   │   │── segment-xxxxxxxx/
|   |   |   |── ...
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1/
│   │   │── waymo_processed_data_v0_5_0_waymo_dbinfos_train_sampled_1.pkl
│   │   │── waymo_processed_data_v0_5_0_gt_database_train_sampled_1_global.npy (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_train.pkl (optional)
│   │   │── waymo_processed_data_v0_5_0_infos_val.pkl (optional)
├── pcdet
├── tools

Generate the data infos by running the following commands:

# KITTI dataset
python -m pcdet.datasets.kitti.kitti_dataset create_kitti_infos tools/cfgs/dataset_configs/kitti_dataset.yaml

# Waymo dataset
python -m pcdet.datasets.waymo.waymo_dataset --func create_waymo_infos \
    --cfg_file tools/cfgs/dataset_configs/waymo_dataset.yaml

Quick Inference

We provide the pre-trained weight file so you can just run with that:

cd tools 
# To achieve fully GPU memory footprint (NVIDIA RTX2080Ti, 11GB).
python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size 100 \
    --ckpt IA-SSD.pth --set MODEL.POST_PROCESSING.RECALL_MODE 'speed'

# To reduce the pressure on the CPU during preprocessing, a suitable batchsize is recommended, e.g. 16. (Over 5 batches per second on RTX2080Ti)
python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size 16 \
    --ckpt IA-SSD.pth --set MODEL.POST_PROCESSING.RECALL_MODE 'speed' 
  • Then detailed inference results can be found here.

Training

The configuration files are in tools/cfgs/kitti_models/IA-SSD.yaml and tools/cfgs/waymo_models/IA-SSD.yaml, and the training scripts are in tools/scripts.

Train with single or multiple GPUs: (e.g., KITTI dataset)

python train.py --cfg_file cfgs/kitti_models/IA-SSD.yaml

# or 

sh scripts/dist_train.sh ${NUM_GPUS} --cfg_file cfgs/kitti_models/IA-SSD.yaml

Evaluation

Evaluate with single or multiple GPUs: (e.g., KITTI dataset)

python test.py --cfg_file cfgs/kitti_models/IA-SSD.yaml  --batch_size ${BATCH_SIZE} --ckpt ${PTH_FILE}

# or

sh scripts/dist_test.sh ${NUM_GPUS} \
    --cfg_file cfgs/kitti_models/IA-SSD.yaml --batch_size ${BATCH_SIZE} --ckpt ${PTH_FILE}

Experimental results

KITTI dataset

Quantitative results of different approaches on KITTI dataset (test set):

Qualitative results of our IA-SSD on KITTI dataset:

z z
z z

Quantitative results of different approaches on Waymo dataset (validation set):

Qualitative results of our IA-SSD on Waymo dataset:

z z
z z

Quantitative results of different approaches on ONCE dataset (validation set):

Qualitative result of our IA-SSD on ONCE dataset:

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{zhang2022not,
  title={Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds},
  author={Zhang, Yifan and Hu, Qingyong and Xu, Guoquan and Ma, Yanxin and Wan, Jianwei and Guo, Yulan},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Acknowledgement

  • This work is built upon the OpenPCDet (version 0.5), an open source toolbox for LiDAR-based 3D scene perception. Please refer to the official github repository for more information.

  • Parts of our Code refer to 3DSSD-pytorch-openPCDet library and the the recent work SASA.

License

This project is released under the Apache 2.0 license.

Related Repos

  1. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds GitHub stars
  2. SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point Clouds GitHub stars
  3. 3D-BoNet: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds GitHub stars
  4. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration GitHub stars
  5. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds GitHub stars
  6. SoTA-Point-Cloud: Deep Learning for 3D Point Clouds: A Survey GitHub stars
Owner
Yifan Zhang
Yifan Zhang
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
use machine learning to recognize gesture on raspberrypi

Raspberrypi_Gesture-Recognition use machine learning to recognize gesture on raspberrypi 說明 利用 tensorflow lite 訓練手部辨識模型 分辨 "剪刀"、"石頭"、"布" 之手勢 再將訓練模型匯入

1 Dec 10, 2021
Implementation of "RaScaNet: Learning Tiny Models by Raster-Scanning Image" from CVPR 2021.

RaScaNet: Learning Tiny Models by Raster-Scanning Images Deploying deep convolutional neural networks on ultra-low power systems is challenging, becau

SAIT (Samsung Advanced Institute of Technology) 5 Dec 26, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

OFA Sys 1.4k Jan 08, 2023
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
STBP is a way to train SNN with datasets by Backward propagation.

Spiking neural network (SNN), compared with depth neural network (DNN), has faster processing speed, lower energy consumption and more biological interpretability, which is expected to approach Stron

Ling Zhang 18 Dec 09, 2022
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022