Code accompanying our NeurIPS 2021 traffic4cast challenge

Overview

Traffic forecasting on traffic movie snippets

This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the challenge, traffic data is provided in movie format, i.e. a rasterised map with volume and average speed values evolving over time. The code is based on (and forked from) the code provided by the competition organizers, which can be found here. For further information on the data and the challenge we also refer to the competition Website or GitHub.

Installation and setup

To install the repository and all required packages, run

git clone https://github.com/NinaWie/NeurIPS2021-traffic4cast.git
cd NeurIPS2021-traffic4cast

conda env update -f environment.yaml
conda activate t4c

export PYTHONPATH="$PYTHONPATH:$PWD"

Instructions on installation with GPU support can be found in the yaml file.

To reproduce the results and train or test on the original data, download the data and extract it to the subfolder data/raw.

Test model

Download the weights of our best model here and put it in a new folder named trained_model in the main directory. The path to the checkpoint should now be NeurIPS2021-traffic4cast/trained_models/ckpt_upp_patch_d100.pt.

To create a submission on the test data, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"
STRIDE=10

python baselines/baselines_cli.py --model_str=up_patch --resume_checkpoint='trained_models/ckpt_upp_patch_d100.pt' --radius=50 --stride=$STRIDE --epochs=0 --batch_size=1 --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE --submit

Notes:

  • For our best submission (score 59.93) a stride of 10 is used. This means that patches are extracted from the test data in a very densely overlapping manner. However, much more patches per sample have to be predicted and the runtime thus increases significantly. We thus recommend to use a stride of 50 for testing (score 60.13 on leaderboard).
  • In our paper, we define d as the side length of each patch. In this codebase we set a radius instead. The best performing model was trained with radius 50 corresponding to d=100.
  • The --submit-flag was added to the arguments to be called whenever a submission should be created.

Train

To train a model from scratch with our approach, run

DEVICE=cpu
DATA_RAW_PATH="data/raw"

python baselines/baselines_cli.py --model_str=up_patch --radius=50 --epochs=1000 --limit=100 --val_limit=10 --batch_size=8 --checkpoint_name='_upp_50_retrained' --num_workers=0 --data_raw_path=$DATA_RAW_PATH --device=$DEVICE

Notes:

  • The model will be saved in a folder called ckpt_upp_50_retrained, as specified with the checkpoint_name argument. The checkpoints will be saved every 50 epochs and whenever a better validation score is achieved (best.pt). Later, training can be resumed (or the model can be tested) by setting --resume_checkpoint='ckpt_upp_50_retrained/best.pt'.
  • No submission will be created after the run. Add the flag --submit in order to create a submission
  • The stride argument is not necessary for training, since it is only relevant for test data. The validation MSE is computed on the patches, not a full city.
  • In order to use our dataset, the number of workers must be set to 0. Otherwise, the random seed will be set such that the same files are loaded for every epoch. This is due to the setup of the PatchT4CDataset, where files are randomly loaded every epoch and then kept in memory.

Reproduce experiments

In our short paper, further experiments comparing model architectures and different strides are shown. To reproduce the experiment on stride values, execute the following steps:

  • Run python baselines/naive_shifted_stats.py to create artifical test data from the city Antwerp
  • Adapt the paths in the script
  • Run python test_script.py
  • Analyse the output csv file results_test_script.csv

For the other experiments, we regularly write training and validation losses to a file results.json during training (file is stored in the same folder as the checkpoints).

Other approaches

  • In naive_shifted_stats we have implemented a naive approach to the temporal challenge, namely using averages of the previous year and adapting the values to 2020 with a simple factor dependent on the shift of the input hour. The statistics however first have to be computed for each city.
  • In the configs file further options were added, for example u_patch which is the normal U-Net with patching, and models from the segmentation_models_pytorch (smp) PyPI package. For the latter, smp must be installed with pip install segmentation_models_pytorch.
Owner
Nina Wiedemann
Nina Wiedemann
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
Image De-raining Using a Conditional Generative Adversarial Network

Image De-raining Using a Conditional Generative Adversarial Network [Paper Link] [Project Page] He Zhang, Vishwanath Sindagi, Vishal M. Patel In this

He Zhang 216 Dec 18, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
It's A ML based Web Site build with python and Django to find the breed of the dog

ML-Based-Dog-Breed-Identifier This is a Django Based Web Site To Identify the Breed of which your DOG belogs All You Need To Do is to Follow These Ste

Sanskar Dwivedi 2 Oct 12, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023