[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Overview

Single Image Depth Prediction with Wavelet Decomposition

Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambetov

CVPR 2021

[Link to paper]

kitti gif nyu gif

We introduce WaveletMonoDepth, which improves efficiency of standard encoder-decoder monocular depth estimation methods by exploiting wavelet decomposition.

5 minute CVPR presentation video link

🧑‍🏫 Methodology

WaveletMonoDepth was implemented for two benchmarks, KITTI and NYUv2. For each dataset, we build our code upon a baseline code. Both baselines share a common encoder-decoder architecture, and we modify their decoder to provide a wavelet prediction.

Wavelets predictions are sparse, and can therefore be computed only at relevant locations, therefore saving a lot of unnecessary computations.

our architecture

The network is first trained with a dense convolutions in the decoder until convergence, and the dense convolutions are then replaced with sparse ones.

This is because the network first needs to learn to predict sparse wavelet coefficients before we can use sparse convolutions.

🗂 Environment Requirements 🗂

We recommend creating a new Anaconda environment to use WaveletMonoDepth. Use the following to setup a new environment:

conda env create -f environment.yml
conda activate wavelet-mdp

Our work uses Pytorch Wavelets, a great package from Fergal Cotter which implements the Inverse Discrete Wavelet Transform (IDWT) used in our work, and a lot more! To install Pytorch Wavelets, simply run:

git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .

🚗 🚦 KITTI 🌳 🛣

Depth Hints was used as a baseline for KITTI.

Depth Hints builds upon monodepth2. If you have questions about running the code, please see the issues in their repositories first.

Setup, Training and Evaluation

Please see the KITTI directory of this repository for details on how to train and evaluate our method.

📊 Results 📦 Trained models

Please find below the scores using dense convolutions to predict wavelet coefficients. Download links coming soon!

Model name Training modality Resolution abs_rel RMSE δ<1.25 Weights Eigen Predictions
Ours Resnet18 Stereo + DepthHints 640 x 192 0.106 4.693 0.876 Coming soon Coming soon
Ours Resnet50 Stereo + DepthHints 640 x 192 0.105 4.625 0.879 Coming soon Coming soon
Ours Resnet18 Stereo + DepthHints 1024 x 320 0.102 4.452 0.890 Coming soon Coming soon
Ours Resnet50 Stereo + DepthHints 1024 x 320 0.097 4.387 0.891 Coming soon Coming soon

🎚 Playing with sparsity

However the most interesting part is that we can make use of the sparsity property of the predicted wavelet coefficients to trade-off performance with efficiency, at a minimal cost on performance. We do so by tuning the threshold, and:

  • low thresholds values will lead to high performance but high number of computations,
  • high thresholds will lead to highly efficient computation, as convolutions will be computed only in a few pixel locations. This will have a minimal impact on performance.

sparsify kitti

Computing coefficients at only 10% of the pixels in the decoding process gives a relative score loss of less than 1.4%.

scores kitti

Our wavelet based method allows us to greatly reduce the number of computation in the decoder at a minimal expense in performance. We can measure the performance-vs-efficiency trade-off by evaluating scores vs FLOPs.

scores vs flops kitti

🪑 🛁 NYUv2 🛋 🚪

Dense Depth was used as a baseline for NYUv2. Note that we used the experimental PyTorch implementation of DenseDepth. Note that compared to the original paper, we made a few different modifications:

  • we supervise depth directly instead of supervising disparity
  • we do not use SSIM
  • we use DenseNet161 as encoder instead of DenseNet169

Setup, Training and Evaluation

Please see the NYUv2 directory of this repository for details on how to train and evaluate our method.

📊 Results and 📦 Trained models

Please find below the scores and associated trained models, using dense convolutions to predict wavelet coefficients.

Model name Encoder Resolution abs_rel RMSE δ<1.25 ε_acc Weights Eigen Predictions
Baseline DenseNet 640 x 480 0.1277 0.5479 0.8430 1.7170 Coming soon Coming soon
Ours DenseNet 640 x 480 0.1258 0.5515 0.8451 1.8070 Coming soon Coming soon
Baseline MobileNetv2 640 x 480 0.1772 0.6638 0.7419 1.8911 Coming soon Coming soon
Ours MobileNetv2 640 x 480 0.1727 0.6776 0.7380 1.9732 Coming soon Coming soon

🎚 Playing with sparsity

As with the KITTI dataset, we can tune the wavelet threshold to greatly reduce computation at minimal cost on performance.

sparsify nyu

Computing coefficients at only 5% of the pixels in the decoding process gives a relative depth score loss of less than 0.15%.

scores nyu

🎮 Try it yourself!

Try using our Jupyter notebooks to visualize results with different levels of sparsity, as well as compute the resulting computational saving in FLOPs. Notebooks can be found in <DATASET>/sparsity_test_notebook.ipynb where <DATASET> is either KITTI or NYUv2.

✏️ 📄 Citation

If you find our work useful or interesting, please consider citing our paper:

@inproceedings{ramamonjisoa-2021-wavelet-monodepth,
  title     = {Single Image Depth Prediction with Wavelet Decomposition},
  author    = {Ramamonjisoa, Micha{\"{e}}l and
               Michael Firman and
               Jamie Watson and
               Vincent Lepetit and
               Daniyar Turmukhambetov},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  month = {June},
  year = {2021}
}

👩‍⚖️ License

Copyright © Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Code, Data and Demo for Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting

InversePrompting Paper: Controllable Generation from Pre-trained Language Models via Inverse Prompting Code: The code is provided in the "chinese_ip"

THUDM 101 Dec 16, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
YoloAll is a collection of yolo all versions. you you use YoloAll to test yolov3/yolov5/yolox/yolo_fastest

官方讨论群 QQ群:552703875 微信群:15158106211(先加作者微信,再邀请入群) YoloAll项目简介 YoloAll是一个将当前主流Yolo版本集成到同一个UI界面下的推理预测工具。可以迅速切换不同的yolo版本,并且可以针对图片,视频,摄像头码流进行实时推理,可以很方便,直观

DL-Practise 244 Jan 01, 2023
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021