StyleMapGAN - Official PyTorch Implementation

Overview

StyleMapGAN - Official PyTorch Implementation

StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, Youngjung Uh
In CVPR 2021.

Paper: https://arxiv.org/abs/2104.14754
Video: https://youtu.be/qCapNyRA_Ng

Abstract: Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. Although manipulating the latent vectors controls the synthesized outputs, editing real images with GANs suffers from i) time-consuming optimization for projecting real images to the latent vectors, ii) or inaccurate embedding through an encoder. We propose StyleMapGAN: the intermediate latent space has spatial dimensions, and a spatially variant modulation replaces AdaIN. It makes the embedding through an encoder more accurate than existing optimization-based methods while maintaining the properties of GANs. Experimental results demonstrate that our method significantly outperforms state-of-the-art models in various image manipulation tasks such as local editing and image interpolation. Last but not least, conventional editing methods on GANs are still valid on our StyleMapGAN. Source code is available at https://github.com/naver-ai/StyleMapGAN.

Demo

Youtube video Click the figure to watch the teaser video.

Interactive demo app Run demo in your local machine.

All test images are from CelebA-HQ, AFHQ, and LSUN.

python demo.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --dataset celeba_hq

Installation

ubuntu gcc 7.4.0 CUDA CUDA-driver cudnn7 conda Python 3.6.12 pytorch 1.4.0

Clone this repository:

git clone https://github.com/naver-ai/StyleMapGAN.git
cd StyleMapGAN/

Install the dependencies:

conda create -y -n stylemapgan python=3.6.12
conda activate stylemapgan
./install.sh

Datasets and pre-trained networks

We provide a script to download datasets used in StyleMapGAN and the corresponding pre-trained networks. The datasets and network checkpoints will be downloaded and stored in the data and expr/checkpoints directories, respectively.

CelebA-HQ. To download the CelebA-HQ dataset and parse it, run the following commands:

# Download raw images and create LMDB datasets using them
# Additional files are also downloaded for local editing
bash download.sh create-lmdb-dataset celeba_hq

# Download the pretrained network (256x256)
bash download.sh download-pretrained-network-256 celeba_hq

# Download the pretrained network (1024x1024 image / 16x16 stylemap / Light version of Generator)
bash download.sh download-pretrained-network-1024 ffhq_16x16

AFHQ. For AFHQ, change above commands from 'celeba_hq' to 'afhq'.

Train network

Implemented using DistributedDataParallel.

# CelebA-HQ
python train.py --dataset celeba_hq --train_lmdb data/celeba_hq/LMDB_train --val_lmdb data/celeba_hq/LMDB_val

# AFHQ
python train.py --dataset afhq --train_lmdb data/afhq/LMDB_train --val_lmdb data/afhq/LMDB_val

# CelebA-HQ / 1024x1024 image / 16x16 stylemap / Light version of Generator
python train.py --size 1024 --latent_spatial_size 16 --small_generator --dataset celeba_hq --train_lmdb data/celeba_hq/LMDB_train --val_lmdb data/celeba_hq/LMDB_val 

Generate images

Reconstruction Results are saved to expr/reconstruction.

# CelebA-HQ
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type reconstruction --test_lmdb data/celeba_hq/LMDB_test

# AFHQ
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type reconstruction --test_lmdb data/afhq/LMDB_test

W interpolation Results are saved to expr/w_interpolation.

# CelebA-HQ
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type w_interpolation --test_lmdb data/celeba_hq/LMDB_test

# AFHQ
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type w_interpolation --test_lmdb data/afhq/LMDB_test

Local editing Results are saved to expr/local_editing. We pair images using a target semantic mask similarity. If you want to see details, please follow preprocessor/README.md.

# Using GroundTruth(GT) segmentation masks for CelebA-HQ dataset.
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type local_editing --test_lmdb data/celeba_hq/LMDB_test --local_editing_part nose

# Using half-and-half masks for AFHQ dataset.
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type local_editing --test_lmdb data/afhq/LMDB_test

Unaligned transplantation Results are saved to expr/transplantation. It shows local transplantations examples of AFHQ. We recommend the demo code instead of this.

python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type transplantation --test_lmdb data/afhq/LMDB_test

Random Generation Results are saved to expr/random_generation. It shows random generation examples.

python generate.py --mixing_type random_generation --ckpt expr/checkpoints/celeba_hq_256_8x8.pt

Style Mixing Results are saved to expr/stylemixing. It shows style mixing examples.

python generate.py --mixing_type stylemixing --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --test_lmdb data/celeba_hq/LMDB_test

Semantic Manipulation Results are saved to expr/semantic_manipulation. It shows local semantic manipulation examples.

python semantic_manipulation.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --LMDB data/celeba_hq/LMDB --svm_train_iter 10000

Metrics

  • Reconstruction: LPIPS, MSE
  • W interpolation: FIDlerp
  • Generation: FID
  • Local editing: MSEsrc, MSEref, Detectability (Refer to CNNDetection)

If you want to see details, please follow metrics/README.md.

License

The source code, pre-trained models, and dataset are available under Creative Commons BY-NC 4.0 license by NAVER Corporation. You can use, copy, tranform and build upon the material for non-commercial purposes as long as you give appropriate credit by citing our paper, and indicate if changes were made.

For business inquiries, please contact [email protected].
For technical and other inquires, please contact [email protected].

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{kim2021stylemapgan,
  title={Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing},
  author={Kim, Hyunsu and Choi, Yunjey and Kim, Junho and Yoo, Sungjoo and Uh, Youngjung},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Related Projects

Model code starts from StyleGAN2 PyTorch unofficial code, which refers to StyleGAN2 official code. LPIPS, FID, and CNNDetection codes are used for evaluation. In semantic manipulation, we used StyleGAN pretrained network to get positive and negative samples by ranking. The demo code starts from Neural-Collage.

Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Trainable PyTorch reproduction of AlphaFold 2

OpenFold A faithful PyTorch reproduction of DeepMind's AlphaFold 2. Features OpenFold carefully reproduces (almost) all of the features of the origina

AQ Laboratory 1.7k Dec 29, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Code accompanying paper: Meta-Learning to Improve Pre-Training

Meta-Learning to Improve Pre-Training This folder contains code to run experiments in the paper Meta-Learning to Improve Pre-Training, NeurIPS 2021. P

28 Dec 31, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022