Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Overview

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

This is the source code for our paper Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving by Mu Cai, Hong Zhang, Huijuan Huang, Qichuan Geng, Yixuan Li and Gao Huang. Code is modified from Swapping Autoencoder, StarGAN v2, Image2StyleGAN.

This is a frequency-based image translation framework that is effective for identity preserving and image realism. Our key idea is to decompose the image into low-frequency and high-frequency components, where the high-frequency feature captures object structure akin to the identity. Our training objective facilitates the preservation of frequency information in both pixel space and Fourier spectral space.

model_architecture

1. Swapping Autoencoder

Dataset Preparation

You can download the following datasets:

Then place the training data and validation data in ./swapping-autoencoder/dataset/.

Train the model

You can train the model using either lmdb or folder format. For training the FDIT assisted Swapping Autoencoder, please run:

cd swapping-autoencoder 
bash train.sh

Change the location of the dataset according to your own setting.

Evaluate the model

Generate image hybrids

Place the source images and reference images under the folder ./sample_pair/source and ./sample_pair/ref respectively. The two image pairs should have the exact same index, such as 0.png, 1.png, ...

To generate the image hybrids according to the source and reference images, please run:

bash eval_pairs.sh

Evaluate the image quality

To evaluate the image quality using Fréchet Inception Distance (FID), please run

bash eval.sh

The pretrained model is provided here.

2. Image2StyleGAN

Prepare the dataset

You can place your own images or our official dataset under the folder ./Image2StlyleGAN/source_image. If using our dataset, then unzip it into that folder.

cd Image2StlyleGAN
unzip source_image.zip 

Get the weight files

To get the pretrained weights in StyleGAN, please run:

cd Image2StlyleGAN/weight_files/pytorch
wget https://pages.cs.wisc.edu/~mucai/fdit/karras2019stylegan-ffhq-1024x1024.pt

Run GAN-inversion model:

Single image inversion

Run the following command by specifying the name of the image image_name:

python encode_image_freq.py --src_im  image_name

Group images inversion

Please run

python encode_image_freq_batch.py 

Quantitative Evaluation

To get the image reconstruction metrics such as MSE, MAE, PSNR, please run:

python eval.py         

3. StarGAN v2

Prepare the dataset

Please download the CelebA-HQ-Smile dataset into ./StarGANv2/data

Train the model

To train the model in Tesla V100, please run:

cd StarGANv2
bash train.sh

Evaluation

To get the image translation samples and image quality measures like FID, please run:

bash eval.sh

Pretrained Model

The pretrained model can be found here.

Image Translation Results

FDIT achieves state-of-the-art performance in several image translation and even GAN-inversion models.

demo

Citation

If you use our codebase or datasets, please cite our work:

@article{cai2021frequency,
title={Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving},
author={Cai, Mu and Zhang, Hong and Huang, Huijuan and Geng, Qichuan and Li, Yixuan and Huang, Gao},
journal={In Proceedings of International Conference on Computer Vision (ICCV)},
year={2021}
}
Owner
Mu Cai
Computer Sciences Ph.D. @UW-Madison
Mu Cai
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Roger Labbe 13k Dec 29, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Forecasting for knowable future events using Bayesian informative priors (forecasting with judgmental-adjustment).

What is judgyprophet? judgyprophet is a Bayesian forecasting algorithm based on Prophet, that enables forecasting while using information known by the

AstraZeneca 56 Oct 26, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Multi-agent reinforcement learning algorithm and environment

Multi-agent reinforcement learning algorithm and environment [en/cn] Pytorch implements multi-agent reinforcement learning algorithms including IQL, Q

万鲲鹏 7 Sep 20, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022