EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

Related tags

Deep LearningEncT5
Overview

EncT5

(Unofficial) Pytorch Implementation of EncT5: Fine-tuning T5 Encoder for Non-autoregressive Tasks

About

  • Finetune T5 model for classification & regression by only using the encoder layers.
  • Implemented of Tokenizer and Model for EncT5.
  • Add BOS Token () for tokenizer, and use this token for classification & regression.
    • Need to resize embedding as vocab size is changed. (model.resize_token_embeddings())
  • BOS and EOS token will be automatically added as below.
    • single sequence: X
    • pair of sequences: A B

Requirements

Highly recommend to use the same version of transformers.

transformers==4.15.0
torch==1.8.1
sentencepiece==0.1.96
datasets==1.17.0
scikit-learn==0.24.2

How to Use

from enc_t5 import EncT5ForSequenceClassification, EncT5Tokenizer

model = EncT5ForSequenceClassification.from_pretrained("t5-base")
tokenizer = EncT5Tokenizer.from_pretrained("t5-base")

# Resize embedding size as we added bos token
if model.config.vocab_size < len(tokenizer.get_vocab()):
    model.resize_token_embeddings(len(tokenizer.get_vocab()))

Finetune on GLUE

Setup

  • Use T5 1.1 base for finetuning.
  • Evaluate on TPU. See run_glue_tpu.sh for more details.
  • Use AdamW optimizer instead of Adafactor.
  • Check best checkpoint on every epoch by using EarlyStoppingCallback.

Results

Metric Result (Paper) Result (Implementation)
CoLA Matthew 53.1 52.4
SST-2 Acc 94.0 94.5
MRPC F1/Acc 91.5/88.3 91.7/88.0
STS-B PCC/SCC 80.5/79.3 88.0/88.3
QQP F1/Acc 72.9/89.8 88.4/91.3
MNLI Mis/Matched 88.0/86.7 87.5/88.1
QNLI Acc 93.3 93.2
RTE Acc 67.8 69.7
You might also like...
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

 Cartoon-StyleGan2 πŸ™ƒ : Fine-tuning StyleGAN2 for Cartoon Face Generation Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Fine-tuning StyleGAN2 for Cartoon Face Generation
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN πŸ™ƒ : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Comments
  • Enable tokenizer to be loaded by sentence-transformer

    Enable tokenizer to be loaded by sentence-transformer

    πŸš€ Feature Request

    Integration into sentence-transformer library.

    πŸ“Ž Additional context

    I tried to load this tokenizer with sentence-transformer library but it failed. AutoTokenizer couldn't load this tokenizer. So, I simply added code to override save_pretrained and its dependencies so that this tokenizer is saved as T5Tokenizer, its super class.

            def save_pretrained(
            self,
            save_directory,
            legacy_format: Optional[bool] = None,
            filename_prefix: Optional[str] = None,
            push_to_hub: bool = False,
            **kwargs,
        ):
            if os.path.isfile(save_directory):
                logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
                return
    
            if push_to_hub:
                commit_message = kwargs.pop("commit_message", None)
                repo = self._create_or_get_repo(save_directory, **kwargs)
    
            os.makedirs(save_directory, exist_ok=True)
    
            special_tokens_map_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + SPECIAL_TOKENS_MAP_FILE
            )
            tokenizer_config_file = os.path.join(
                save_directory, (filename_prefix + "-" if filename_prefix else "") + TOKENIZER_CONFIG_FILE
            )
    
            tokenizer_config = copy.deepcopy(self.init_kwargs)
            if len(self.init_inputs) > 0:
                tokenizer_config["init_inputs"] = copy.deepcopy(self.init_inputs)
            for file_id in self.vocab_files_names.keys():
                tokenizer_config.pop(file_id, None)
    
            # Sanitize AddedTokens
            def convert_added_tokens(obj: Union[AddedToken, Any], add_type_field=True):
                if isinstance(obj, AddedToken):
                    out = obj.__getstate__()
                    if add_type_field:
                        out["__type"] = "AddedToken"
                    return out
                elif isinstance(obj, (list, tuple)):
                    return list(convert_added_tokens(o, add_type_field=add_type_field) for o in obj)
                elif isinstance(obj, dict):
                    return {k: convert_added_tokens(v, add_type_field=add_type_field) for k, v in obj.items()}
                return obj
    
            # add_type_field=True to allow dicts in the kwargs / differentiate from AddedToken serialization
            tokenizer_config = convert_added_tokens(tokenizer_config, add_type_field=True)
    
            # Add tokenizer class to the tokenizer config to be able to reload it with from_pretrained
            ############################################################################
            tokenizer_class = self.__class__.__base__.__name__
            ############################################################################
            # Remove the Fast at the end unless we have a special `PreTrainedTokenizerFast`
            if tokenizer_class.endswith("Fast") and tokenizer_class != "PreTrainedTokenizerFast":
                tokenizer_class = tokenizer_class[:-4]
            tokenizer_config["tokenizer_class"] = tokenizer_class
            if getattr(self, "_auto_map", None) is not None:
                tokenizer_config["auto_map"] = self._auto_map
            if getattr(self, "_processor_class", None) is not None:
                tokenizer_config["processor_class"] = self._processor_class
    
            # If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
            # loaded from the Hub.
            if self._auto_class is not None:
                custom_object_save(self, save_directory, config=tokenizer_config)
    
            with open(tokenizer_config_file, "w", encoding="utf-8") as f:
                f.write(json.dumps(tokenizer_config, ensure_ascii=False))
            logger.info(f"tokenizer config file saved in {tokenizer_config_file}")
    
            # Sanitize AddedTokens in special_tokens_map
            write_dict = convert_added_tokens(self.special_tokens_map_extended, add_type_field=False)
            with open(special_tokens_map_file, "w", encoding="utf-8") as f:
                f.write(json.dumps(write_dict, ensure_ascii=False))
            logger.info(f"Special tokens file saved in {special_tokens_map_file}")
    
            file_names = (tokenizer_config_file, special_tokens_map_file)
    
            save_files = self._save_pretrained(
                save_directory=save_directory,
                file_names=file_names,
                legacy_format=legacy_format,
                filename_prefix=filename_prefix,
            )
    
            if push_to_hub:
                url = self._push_to_hub(repo, commit_message=commit_message)
                logger.info(f"Tokenizer pushed to the hub in this commit: {url}")
    
            return save_files
    
    enhancement 
    opened by kwonmha 0
Releases(v1.0.0)
  • v1.0.0(Jan 22, 2022)

    What’s Changed

    :rocket: Features

    • Add GLUE Trainer (#2) @monologg
    • Add Template & EncT5 model and tokenizer (#1) @monologg

    :pencil: Documentation

    • Add readme & script (#3) @monologg
    Source code(tar.gz)
    Source code(zip)
Owner
Jangwon Park
Jangwon Park
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Transfer Learning for Pose Estimation of Illustrated Characters

bizarre-pose-estimator Transfer Learning for Pose Estimation of Illustrated Characters Shuhong Chen *, Matthias Zwicker * WACV2022 [arxiv] [video] [po

Shuhong Chen 142 Dec 28, 2022
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022