Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Overview

MViTs Excel at Class-agnostic Object Detection

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer and Ming-Hsuan Yang

Paper: https://arxiv.org/abs/2111.11430


main figure

Abstract: What constitutes an object? This has been a long-standing question in computer vision. Towards this goal, numerous learning-free and learning-based approaches have been developed to score objectness. However, they generally do not scale well across new domains and for unseen objects. In this paper, we advocate that existing methods lack a top-down supervision signal governed by human-understandable semantics. To bridge this gap, we explore recent Multi-modal Vision Transformers (MViT) that have been trained with aligned image-text pairs. Our extensive experiments across various domains and novel objects show the state-of-the-art performance of MViTs to localize generic objects in images. Based on these findings, we develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention that can adaptively generate proposals given a specific language query. We show the significance of MViT proposals in a diverse range of applications including open-world object detection, salient and camouflage object detection, supervised and self-supervised detection tasks. Further, MViTs offer enhanced interactability with intelligible text queries.


Architecture overview of MViTs used in this work

Architecture overview


Results


Class-agnostic OD performance of MViTs in comparison with uni-modal detector (RetinaNet) on several datasets. MViTs show consistently good results on all datasets.

Results


Enhanced Interactability: Effect of using different intuitive text queries on the MDef-DETR class-agnostic OD performance. Combining detections from multiple queries captures varying aspects of objectness.

Results


Generalization to Rare/Novel Classes: MDef-DETR class-agnostic OD performance on rarely and frequently occurring categories in the pretraining captions. The numbers on top of the bars indicate occurrences of the corresponding category in the training dataset. The MViT achieves good recall values even for the classes with no or very few occurrences.

Results


Open-world Object Detection: Effect of using class-agnostic OD proposals from MDef-DETR for pseudo labelling of unknowns in Open World Detector (ORE).

Results


Pretraining for Class-aware Object Detection: Effect of using MDef-DETR proposals for pre-training of DETReg instead of Selective Search proposals.

Results


Evaluation

The provided codebase contains the pre-computed detections for all datasets using ours MDef-DETR model. The provided directory structure is as follows,

-> README.md
-> LICENSE
-> get_eval_metrics.py
-> get_multi_dataset_eval_metrics.py
-> data
    -> voc2007
        -> combined.pkl
    -> coco
        -> combined.pkl
    -> kitti
        -> combined.pkl
    -> kitchen
        -> combined.pkl
    -> cliaprt
        -> combined.pkl
    -> comic
        -> combined.pkl
    -> watercolor
        -> combined.pkl
    -> dota
        -> combined.pkl

Where combined.pkl contains the combined detections from multiple intutive text queries for corresponding datasets. (Refer Section 5.1: Enhanced Interactability for more details)

Download the annotations for all datasets and arrange them as shown below. Note that the script expect COCO annotations in standard COCO format & annotations of all other datasets in VOC format.

...
...
-> data
    -> voc2007
        -> combined.pkl
        -> Annotations
    -> coco
        -> combined.pkl
        -> instances_val2017_filt.json
    -> kitti
        -> combined.pkl
        -> Annotations
        ...
    -> kitchen
        -> combined.pkl
        -> Annotations
    -> cliaprt
        -> combined.pkl
        -> Annotations
    -> comic
        -> combined.pkl
        -> Annotations
    -> watercolor
        -> combined.pkl
        -> Annotations
    -> dota
        -> combined.pkl
        -> Annotations

Once the above mentioned directory structure is created, follow the following steps to calculate the metrics.

  1. Install numpy
$ pip install numpy
  1. Calculate metrics
$ python get_multi_dataset_eval_metrics.py

The calculated metrics will be stored in a data.csv file in the same directory.


Citation

If you use our work, please consider citing:

@article{Maaz2021Multimodal,
    title={Multi-modal Transformers Excel at Class-agnostic Object Detection},
    author={Muhammad Maaz and Hanoona Rasheed and Salman Khan and Fahad Shahbaz Khan and Rao Muhammad Anwer and Ming-Hsuan Yang},
    journal={ArXiv 2111.11430},
    year={2021}
}

Contact

Should you have any question, please contact [email protected] or [email protected]

🚀 Note: The repository contains the minimum evaluation code. The complete training and inference scripts along with pretrained models will be released soon. Stay Tuned!

Comments
  • aligning image text pairs

    aligning image text pairs

    I have a question on the paper: you train on aligned image-text pairs. How do you create this alignment? is it the same way as in MDeTr? I did not fully understand from the paper, especially for non-natural images like satellite images or medical images.

    opened by nikky4D 6
  • Loading checkpoints for inference

    Loading checkpoints for inference

    Which checkpoints in drive link you provided will load correctly in default MDefDETR model without any errors? Im getting missing/unexpected keys errors.

    documentation 
    opened by KaleemW 4
  • Is EMA used in this work?

    Is EMA used in this work?

    Hello author, thanks for your great work. I raise a question about the usage of Exponential Moving Average (EMA) in this paper, hoping you can provide me with some clues. It seems that this paper does not detail in this part. As far as I know, MDETR uses it and evaluate use the EMA model. So I wonder is it used in this work? If it is actually used, why should we evaluate by the EMA model rather than the original one?

    opened by JacobYuan7 4
  • one of the variables needed for gradient computation has been modified by an inplace operation

    one of the variables needed for gradient computation has been modified by an inplace operation

    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.LongTensor [2, 20]] is at version 3; expected version 2 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

    This error will terminate the training procedure when training mdef_detr using the PyTorch environment as you advise(torch==1.8.0+cu111).

    And I found the variables of 'transformer.text_encoder.pooler.dense.weight' does not have grad. This may be the main reason for this error.

    opened by xushilin1 2
  • Loading the Faster RCNN checkpoint

    Loading the Faster RCNN checkpoint

    Greetings

    The readme states: (Feb 01, 2022) Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link

    Following the link to the google drive, only provides me with the model weight for the Faster-RCNN, but not with instructions on how to load it and which framework to use. I have tried creating a Faster-RCNN-resnet101 model with pytorch, but when I load the model weight, it states that the layer names does not match. Any guidance would be much appreciated.

    Best regards Martin

    uni-modal-detectors 
    opened by MartinPedersenpp 2
  • Need to understand how to import weights

    Need to understand how to import weights

    Hello,

    Firstly, I'd like to congratulate you for bringing this amazing work. Class agnostic object detection is much needed currently in the industry and this would be a great way to solve the problem.

    I wanted to test your model on some custom data. However, I cannot import pre-trained weights from the link you have provided. I can see the zip file but I couldn't find a way to import them. I'm using OpenCV to import weights. It is asking me to have a config file as well as .weights file.

    Could you please help me which library to use to import weights when I'm working on a jupyter notebook?

    Thank you,

    opened by abhi-vellala 2
  • pretrain data download

    pretrain data download

    if is it possible to split pretrain data into multiple seperate zip files。 I download data from google drive : https://drive.google.com/drive/folders/1-3kAsyZIVFbNelRXrF93Y5tMgOypv2jV i cannot download this data because of google drive time limit(less than 1 hours) and my limit network bandwidth。

    documentation 
    opened by zhouxingguang 1
  • Training code release

    Training code release

    This pull request adds

    • Training codes for MDef-DETR and MDef-DETR minus Language models
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications
    • All the pre-trained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results
    opened by mmaaz60 0
  • Questions about your training procedure?

    Questions about your training procedure?

    To my understanding, I think you use image-text pairs as inputs and only bbox annotations as supervision signals without any class labels, does it right?

    opened by GYslchen 1
  • Questions about your pretrained model

    Questions about your pretrained model

    Does the pre-trained model you provide cover the categories on LVIS data? If I want to do open-world object detection on the LVIS dataset, can I directly use your pre-trained model to generate the proposals or should I need to filter the dataset so that it doesn't contain any object in the LVIS dataset?

    opened by chengsilin 1
  • how to generate 'tokens_positive'  ann from detector dataset like object365?

    how to generate 'tokens_positive' ann from detector dataset like object365?

    I found 'tokens_positive' was used in your ann file. could you please release the code of how to process detect data like coco to get the 'tokens_positive' ann results?

    documentation 
    opened by zhouxingguang 1
Releases(v1.0)
  • v1.0(Feb 1, 2022)

    • Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md
    • All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link
    Source code(tar.gz)
    Source code(zip)
  • v0.1(Nov 25, 2021)

    Evaluation Code & Pre-trained Models

    • Releases evaluation code for MDef-DETR and 'MDef-DETR w/o Language Branch' model
    • Releases the pre-trained weights for both models
    • Releases the pre-computed predictions for both the models
    Source code(tar.gz)
    Source code(zip)
Owner
Muhammad Maaz
An Electrical Engineer with experience in Computer Vision software development. Skilled in Machine Learning, Deep Learning and Computer Vision.
Muhammad Maaz
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Simple tutorials on Pytorch DDP training

pytorch-distributed-training Distribute Dataparallel (DDP) Training on Pytorch Features Easy to study DDP training You can directly copy this code for

Ren Tianhe 188 Jan 06, 2023
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
A fast MoE impl for PyTorch

An easy-to-use and efficient system to support the Mixture of Experts (MoE) model for PyTorch.

Rick Ho 873 Jan 09, 2023
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022