Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Overview

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin Dinu1,3, Philipp Renz1, Angela Bitto-Nemling1, Vihang Patil1, Sepp Hochreiter1, 2

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University Linz, Austria
2 Institute of Advanced Research in Artificial Intelligence (IARAI)
3 Dynatrace Research


The paper is available on arxiv


Implementation

This repository contains implementations of BC, BVE, MCE, DQN, QR-DQN, REM, BCQ, CQL and CRR, used for our evaluation of Offline RL datasets. Implementation-wise, algorithms can in theory be used in the usual Online RL setting as well as Offline RL settings. Furthermore, utilities for offline dataset evaluation and plotting of results are contained.

Experiments are managed through experimental files (ex_01.py, ex_02.py, ...). While this is not a necessity, we created an experimental file for each of the six environments used to obtain our results, to more easily distribute experiments across multiple devices.

Dependencies

To reproduce all results we provide an environment.yml file to setup a conda environment with the required packages. Run the following command to create and activate the environment:

conda env create --file environment.yml
conda activate offline_rl
pip install -e .

Usage

To create datasets for Offline RL, each experimental file needs to be run by

python ex_XX.py --online

After this run has finished, datasets for Offline RL are created, which are then used for applying algorithms in the Offline RL setting. Offline experiments are started with

python ex_XX.py

Runtimes will be long, especially on MinAtar environments, which is why distribution across multiple machines is crucial in this step. To distribute across multiple machines, two further command line arguments are eligible, --run and --dataset. Depending on how many runs have been done to create datasets for Offline RL (five in the paper), one can select a specific version of the dataset with the first parameter. For the results in the paper, five different datasets are created (random, mixed, replay, noisy, expert), which can be selected by its number using the second parameter.

As an example, offline experiments using the fourth dataset creation run on the expert dataset is started with

python ex_XX.py --run 3 --dataset 4

or using the first dataset creation run on the replay dataset

python ex_XX.py --run 0 --dataset 2

Results

After all experiments are concluded, one has to combine the logged files and create the plots by executing

python source/plotting/join_csv_files.py
python source/plotting/create_plots.py

Furthermore, plots for the training curves can be created by executing

python source/plotting/learning_curves.py

Alternative visualisations of the main results, using parallel coordinates are available by executing

python source/plotting/parallel_coordinates.py

LICENSE

MIT LICENSE

Owner
Institute for Machine Learning, Johannes Kepler University Linz
Software of the Institute for Machine Learning, JKU Linz
Institute for Machine Learning, Johannes Kepler University Linz
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 322 Dec 31, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Official DGL implementation of "Rethinking High-order Graph Convolutional Networks"

SE Aggregation This is the implementation for Rethinking High-order Graph Convolutional Networks. Here we show the codes for citation networks as an e

Tianqi Zhang (张天启) 32 Jul 19, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation

CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation (CVPR 2021, oral presentation) CoCosNet v2: Full-Resolution Correspondence

Microsoft 308 Dec 07, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022