Source code of RRPN ---- Arbitrary-Oriented Scene Text Detection via Rotation Proposals

Related tags

Computer VisionRRPN
Overview

Paper source

Arbitrary-Oriented Scene Text Detection via Rotation Proposals

https://arxiv.org/abs/1703.01086

News

We update RRPN in pytorch 1.0! View https://github.com/mjq11302010044/RRPN_plusplus for more details. Text Spotter f-measure results are 89.5 % in IC15, 92.0% in IC13. The testing speed can reach 13.3 fps in IC13 with input shorter size of 640px !

License

RRPN is released under the MIT License (refer to the LICENSE file for details). This project is for research purpose only, further use for RRPN should contact authors.

Citing RRPN

If you find RRPN useful in your research, please consider citing:

@article{Jianqi17RRPN,
    Author = {Jianqi Ma and Weiyuan Shao and Hao Ye and Li Wang and Hong Wang and Yingbin Zheng and Xiangyang Xue},
    Title = {Arbitrary-Oriented Scene Text Detection via Rotation Proposals},
    journal = {IEEE Transactions on Multimedia},
    volume={20}, 
    number={11}, 
    pages={3111-3122}, 
    year={2018}
}

Contents

  1. Requirements: software
  2. Requirements: hardware
  3. Basic installation
  4. Demo
  5. Beyond the demo: training and testing

Requirements: software

  1. Requirements for Caffe and pycaffe (see: Caffe installation instructions)

Note: Caffe must be built with support for Python layers!

# In your Makefile.config, make sure to have this line uncommented
WITH_PYTHON_LAYER := 1
# Unrelatedly, it's also recommended that you use CUDNN
USE_CUDNN := 1

You can download my Makefile.config for reference. 2. Python packages you might not have: cython, python-opencv, easydict

Requirements: hardware

  1. For training the end-to-end version of RRPN with VGG16, 4~5G of GPU memory is sufficient (using CUDNN)

Installation (sufficient for the demo)

  1. Clone the RRPN repository
# git clone https://github.com/mjq11302010044/RRPN.git
  1. We'll call the directory that you cloned RRPN into RRPN_ROOT

  2. Build the Cython modules

    cd $RRPN_ROOT/lib
    make
  3. Build Caffe and pycaffe

    cd $RRPN_ROOT/caffe-fast-rcnn
    # Now follow the Caffe installation instructions here:
    #   http://caffe.berkeleyvision.org/installation.html
    
    # If you're experienced with Caffe and have all of the requirements installed
    # and your Makefile.config in place, then simply do:
    make -j4 && make pycaffe
  4. Download pre-computed RRPN detectors

    Trained VGG16 model download link: https://drive.google.com/open?id=0B5rKZkZodGIsV2RJUjVlMjNOZkE
    

    Then move the model into $RRPN_ROOT/data/faster_rcnn_models.

Demo

After successfully completing basic installation, you'll be ready to run the demo.

To run the demo

cd $RRPN_ROOT
python ./tools/rotation_demo.py

The txt results will be saved in $RRPN_ROOT/result

Beyond the demo: installation for training and testing models

You can use the function get_rroidb() in $RRPN_ROOT/lib/rotation/data_extractor.py to manage your training data:

Each training sample should be managed in a python dict like:

im_info = {
	'gt_classes': # Set to 1(Only text)
	'max_classes': # Set to 1(Only text)
	'image': # image path to access
	'boxes': # ground truth box
	'flipped' : # Flip an image or not (Not implemented)
	'gt_overlaps' : # overlap of a class(text)
	'seg_areas' : # area of an ground truth region
	'height': # height of an image data
	'width': # width of an image data
	'max_overlaps' : # max overlap with each gt-proposal
	'rotated': # Random angle to rotate an image
}

Then assign your database to the variable 'roidb' in main function of $RRPN_ROOT/tools/train_net.py

116: roidb = get_rroidb("train") # change to your data manage function

Download pre-trained ImageNet models

Pre-trained ImageNet models can be downloaded for the networks described in the paper: VGG16.

cd $RRPN_ROOT
./data/scripts/fetch_imagenet_models.sh

VGG16 comes from the Caffe Model Zoo, but is provided here for your convenience. ZF was trained at MSRA.

Then you can train RRPN by typing:

./experiment/scripts/faster_rcnn_end2end.sh [GPU_ID] [NET] rrpn

[NET] usually takes VGG16

Trained RRPN networks are saved under:(We set the directory to './' by default.)

./

One can change the directory in variable output_dir in $RRPN_ROOT/tools/train_net.py

Any question about this project please send message to Jianqi Ma([email protected]), and enjoy it!

"Very simple but works well" Computer Vision based ID verification solution provided by LibraX.

ID Verification by LibraX.ai This is the first free Identity verification in the market. LibraX.ai is an identity verification platform for developers

LibraX.ai 46 Dec 06, 2022
Rubik's Cube in pygame with OpenGL

Rubik Rubik's Cube in pygame with OpenGL The script show on the screen a Rubik Cube buit with OpenGL. Then I have also implemented all the possible mo

Gabro 2 Apr 15, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022
Table Extraction Tool

Tree Structure - Table Extraction Fonduer has been successfully extended to perform information extraction from richly formatted data such as tables.

HazyResearch 88 Jun 02, 2022
Super Mario Game With Python

Super_Mario Hello all this is a simple python program which tries to use our body as a controller for the super mario game Here I have used media pipe

Adarsh Badagala 219 Nov 25, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
STEFANN: Scene Text Editor using Font Adaptive Neural Network

STEFANN: Scene Text Editor using Font Adaptive Neural Network @ The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.

Prasun Roy 208 Dec 11, 2022
This is a GUI program which consist of 4 OpenCV projects

Tkinter-OpenCV Project Using Tkinter, Opencv, Mediapipe This is a python GUI program using Tkinter which consist of 4 OpenCV projects 1. Finger Counte

Arya Bagde 3 Feb 22, 2022
A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports

A buffered and threaded wrapper for the OpenCV VideoCapture object. Can speed up video decoding significantly. Supports "with"-syntax.

Patrice Matz 0 Oct 30, 2021
Layout Analysis Evaluator for the ICDAR 2017 competition on Layout Analysis for Challenging Medieval Manuscripts

LayoutAnalysisEvaluator Layout Analysis Evaluator for: ICDAR 2019 Historical Document Reading Challenge on Large Structured Chinese Family Records ICD

17 Dec 08, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Application-Oriented Performance Benchmarks for Quantum Computing This repository contains a collection of prototypical application- or algorithm-cent

SRI International 67 Nov 30, 2022
第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)第一名;仅采用densenet识别图中文字

OCR 第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)冠军 模型结果 该比赛计算每一个条目的f1score,取所有条目的平均,具体计算方式在这里。这里的计算方式不对一句话里的相同文字重复计算,故f1score比提交的最终结果低: - train val f1score 0

尹畅 441 Dec 22, 2022
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
Fast style transfer

faststyle Faststyle aims to provide an easy and modular interface to Image to Image problems based on feature loss. Install Making sure you have a wor

Lucas Vazquez 21 Mar 11, 2022
Single Shot Text Detector with Regional Attention

Single Shot Text Detector with Regional Attention Introduction SSTD is initially described in our ICCV 2017 spotlight paper. A third-party implementat

Pan He 215 Dec 07, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022