ilpyt: imitation learning library with modular, baseline implementations in Pytorch

Overview

ilpyt

The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified infrastructure supporting key imitation learning and reinforcement learning algorithms. You can read more about ilpyt in our white paper.

Documentation is available here.

Table of Contents

Main Features

  • Implementation of baseline imitation learning algorithms: BC, DAgger, AppL, GCL, GAIL.
  • Implementation of baseline reinforcement learning algorithms, for comparison purposes: DQN, A2C, PPO2.
  • Modular, extensible framework for training, evaluating, and testing imitation learning (and reinforcement learning) algorithms.
  • Simple algorithm API which exposes train and test methods, allowing for quick library setup and use (a basic usage of the library requires less than ten lines of code to have a fully functioning train and test pipeline).
  • A modular infrastructure for easy modification and reuse of existing components for novel algorithm implementations.
  • Parallel and serialization modes, allowing for faster, optimized operations or serial operations for debugging.
  • Compatibility with the OpenAI Gym environment interface for access to many existing benchmark learning environments, as well as the flexibility to create custom environments.

Installation

Note: ilpyt has only been tested on Ubuntu 20.04, and with Python 3.8.5.

  1. In order to install ilpyt, there are a few prerequisites required. The following commands will setup all the basics so you can run ilpyt with the OpenAI Gym environments:
# Install system-based packages
apt-get install cmake python3-pip python3-testresources freeglut3-dev xvfb

# Install Wheel
pip3 install --no-cache-dir --no-warn-script-location wheel
  1. Install ilpyt using pip:
pip3 install ilpyt

# Or to install from source:
# pip3 install -e .
  1. (Optional) Run the associated Python tests to confirm the package has installed successfully:
git clone https://github.com/mitre/ilpyt.git
cd ilpyt/

# To run all the tests
# If running headless, prepend the pytest command with `xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" --`
pytest tests/

# Example: to run an individual test, like DQN
pytest tests/test_dqn.py 

Getting Started

Various sample Python script(s) of how to run the toolbox can be found within the examples directory. Documentation is available here.

Basic Usage

Various sample Python script(s) of how to run the toolbox can be found within the examples directory. A minimal train and test snippet for an imitation learning algorithm takes less than 10 lines of code in ilpyt. In this basic example, we are training a behavioral cloning algorithm for 10,000 epochs before testing the best policy for 100 episodes.

import ilpyt
from ilpyt.agents.imitation_agent import ImitationAgent
from ilpyt.algos.bc import BC

env = ilpyt.envs.build_env(env_id='LunarLander-v2',  num_env=16)
net = ilpyt.nets.choose_net(env)
agent = ImitationAgent(net=net, lr=0.0001)

algo = BC(agent=agent, env=env)
algo.train(num_epochs=10000, expert_demos='demos/LunarLander-v2/demos.pkl')
algo.test(num_episodes=100)

Code Organization

workflow

At a high-level, the algorithm orchestrates the training and testing of our agent in a particular environment. During these training or testing loops, a runner will execute the agent and environment in a loop to collect (state, action, reward, next state) transitions. The individual components of a transition (e.g., state or action) are typically torch Tensors. The agent can then use this batch of transitions to update its network and move towards an optimal action policy.

Customization

To implement a new algorithm, one simply has to extend the BaseAlgorithm and BaseAgent abstract classes (for even further customization, one can even make custom networks by extending the BaseNetwork interface). Each of these components is modular (see code organization for more details), allowing components to be easily swapped out. (For example, the agent.generator used in the GAIL algorithm can be easily swapped between PPOAgent, DQNAgent, or A2Cagent. In a similar way, new algorithm implementations can utilize existing implemented classes as building blocks, or extend the class interfaces for more customization.)

Adding a custom environment is as simple as extending the OpenAI Gym Environment interface and registering it within your local gym environment registry.

See agents/base_agent.py, algos/base_algo.py, nets/base_net.py for more details.

Supported Algorithms and Environments

The following imitation learning (IL) algorithms are supported:

The following reinforcement learning (RL) algorithms are supported:

The following OpenAI Gym Environments are supported. Environments with:

  • Observation space: Box(x,) and Box(x,y,z)
  • Action space: Discrete(x) and Box(x,)

NOTE: To create your own custom environment, just follow the OpenAI Gym Environment interface. i.e., your environment must implement the following methods (and inherit from the OpenAI Gym Class). More detailed instructions can be found on the OpenAI GitHub repository page on creating custom Gym environments.

Benchmarks

Sample train and test results of the baseline algorithms on some environments:

CartPole-v0 MountainCar-v0 MountainCarContinuous-v0 LunarLander-v2 LunarLanderContinuous-v2
Threshold 200 -110 90 200 200
Expert (Mean/Std) 200.00 / 0.00 -98.71 / 7.83 93.36 / 0.05 268.09 / 21.18 283.83 / 17.70
BC (Mean/Std) 200.00 / 0.00 -100.800 / 13.797 93.353 / 0.113 244.295 / 97.765 285.895 / 14.584
DAgger (Mean/Std) 200.00 / 0.00 -102.36 / 15.38 93.20 / 0.17 230.15 / 122.604 285.85 / 14.61
GAIL (Mean/Std) 200.00 / 0.00 -104.31 / 17.21 79.78 / 6.23 201.88 / 93.82 282.00 / 31.73
GCL 200.00 / 0.00 - - 212.321 / 119.933 255.414 / 76.917
AppL(Mean/Std) 200.00 / 0.00 -108.60 / 22.843 - - -
DQN (Mean/Std) - - - 281.96 / 24.57 -
A2C (Mean/Std) - - 201.26 / 62.52 -
PPO (Mean/Std) - - - 249.72 / 75.05 -

The pre-trained weights for these models can be found in our Model Zoo.

Citation

If you use ilpyt for your work, please cite our white paper:

@misc{ilpyt_2021,
  author = {Vu, Amanda and Tapley, Alex and Bissey, Brett},
  title = {ilpyt: Imitation Learning Research Code Base in PyTorch},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/mitre/ilpyt}},
}
Owner
The MITRE Corporation
Open Source Software from the MITRE Corporation
The MITRE Corporation
Repo for parser tensorflow(.pb) and tflite(.tflite)

tfmodel_parser .pb file is the format of tensorflow model .tflite file is the format of tflite model, which usually used in mobile devices before star

1 Dec 23, 2021
Recognize numbers from an (28 x 28) image using neural networks

Number recognition Recognize numbers from a 28 x 28 image using neural networks Usage This is an example of a simple usage of number-recognition NOTE:

Mauro Baladés 2 Dec 29, 2021
FishNet: One Stage to Detect, Segmentation and Pose Estimation

FishNet FishNet: One Stage to Detect, Segmentation and Pose Estimation Introduction In this project, we combine target detection, instance segmentatio

1 Oct 05, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022