[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Overview

Anycost GAN

video | paper | website

Anycost GANs for Interactive Image Synthesis and Editing

Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zhu

MIT, Adobe Research, CMU

In CVPR 2021

flexible

Anycost GAN generates consistent outputs under various computational budgets.

Demo

Here, we can use the Anycost generator for interactive image editing. A full generator takes ~3s to render an image, which is too slow for editing. While with Anycost generator, we can provide a visually similar preview at 5x faster speed. After adjustment, we hit the "Finalize" button to synthesize the high-quality final output. Check here for the full demo.

Overview

Anycost generators can be run at diverse computation costs by using different channel and resolution configurations. Sub-generators achieve high output consistency compared to the full generator, providing a fast preview.

overview

With (1) Sampling-based multi-resolution training, (2) adaptive-channel training, and (3) generator-conditioned discriminator, we achieve high image quality and consistency at different resolutions and channels.

method

Results

Anycost GAN (uniform channel version) supports 4 resolutions and 4 channel ratios, producing visually consistent images with different image fidelity.

uniform

The consistency retains during image projection and editing:

Usage

Getting Started

  • Clone this repo:
git clone https://github.com/mit-han-lab/anycost-gan.git
cd anycost-gan
  • Install PyTorch 1.7 and other dependeinces.

We recommend setting up the environment using Anaconda: conda env create -f environment.yml

Introduction Notebook

We provide a jupyter notebook example to show how to use the anycost generator for image synthesis at diverse costs: notebooks/intro.ipynb.

We also provide a colab version of the notebook: . Be sure to select the GPU as the accelerator in runtime options.

Interactive Demo

We provide an interactive demo showing how we can use anycost GAN to enable interactive image editing. To run the demo:

python demo.py

You can find a video recording of the demo here.

Using Pre-trained Models

To get the pre-trained generator, encoder, and editing directions, run:

import model

pretrained_type = 'generator'  # choosing from ['generator', 'encoder', 'boundary']
config_name = 'anycost-ffhq-config-f'  # replace the config name for other models
model.get_pretrained(pretrained_type, config=config_name)

We also provide the face attribute classifier (which is general for different generators) for computing the editing directions. You can get it by running:

model.get_pretrained('attribute-predictor')

The attribute classifier takes in the face images in FFHQ format.

After loading the Anycost generator, we can run it at a wide range of computational costs. For example:

from model.dynamic_channel import set_uniform_channel_ratio, reset_generator

g = model.get_pretrained('generator', config='anycost-ffhq-config-f')  # anycost uniform
set_uniform_channel_ratio(g, 0.5)  # set channel
g.target_res = 512  # set resolution
out, _ = g(...)  # generate image
reset_generator(g)  # restore the generator

For detailed usage and flexible-channel anycost generator, please refer to notebooks/intro.ipynb.

Model Zoo

Currently, we provide the following pre-trained generators, encoders, and editing directions. We will add more in the future.

For Anycost generators, by default, we refer to the uniform setting.

config name generator encoder edit direction
anycost-ffhq-config-f ✔️ ✔️ ✔️
anycost-ffhq-config-f-flexible ✔️ ✔️ ✔️
anycost-car-config-f ✔️
stylegan2-ffhq-config-f ✔️ ✔️ ✔️

stylegan2-ffhq-config-f refers to the official StyleGAN2 generator converted from the repo.

Datasets

We prepare the FFHQ, CelebA-HQ, and LSUN Car datasets into a directory of images, so that it can be easily used with ImageFolder from torchvision. The dataset layout looks like:

├── PATH_TO_DATASET
│   ├── images
│   │   ├── 00000.png
│   │   ├── 00001.png
│   │   ├── ...

Due to the copyright issue, you need to download the dataset from official site and process them accordingly.

Evaluation

We provide the code to evaluate some metrics presented in the paper. Some of the code is written with horovod to support distributed evaluation and reduce the cost of inter-GPU communication, which greatly improves the speed. Check its website for a proper installation.

Fre ́chet Inception Distance (FID)

Before evaluating the FIDs, you need to compute the inception features of the real images using scripts like:

python tools/calc_inception.py \
    --resolution 1024 --batch_size 64 -j 16 --n_sample 50000 \
    --save_name assets/inceptions/inception_ffhq_res1024_50k.pkl \
    PATH_TO_FFHQ

or you can download the pre-computed inceptions from here and put it under assets/inceptions.

Then, you can evaluate the FIDs by running:

horovodrun -np N_GPU \
    python metrics/fid.py \
    --config anycost-ffhq-config-f \
    --batch_size 16 --n_sample 50000 \
    --inception assets/inceptions/inception_ffhq_res1024_50k.pkl
    # --channel_ratio 0.5 --target_res 512  # optionally using a smaller resolution/channel

Perceptual Path Lenght (PPL)

Similary, evaluting the PPL with:

horovodrun -np N_GPU \
    python metrics/ppl.py \
    --config anycost-ffhq-config-f

Attribute Consistency

Evaluating the attribute consistency by running:

horovodrun -np N_GPU \
    python metrics/attribute_consistency.py \
    --config anycost-ffhq-config-f \
    --channel_ratio 0.5 --target_res 512  # config for the sub-generator; necessary

Encoder Evaluation

To evaluate the performance of the encoder, run:

python metrics/eval_encoder.py \
    --config anycost-ffhq-config-f \
    --data_path PATH_TO_CELEBA_HQ

Training

The training code will be updated shortly.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{lin2021anycost,
  author    = {Lin, Ji and Zhang, Richard and Ganz, Frieder and Han, Song and Zhu, Jun-Yan},
  title     = {Anycost GANs for Interactive Image Synthesis and Editing},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2021},
}

Related Projects

GAN Compression | Once for All | iGAN | StyleGAN2

Acknowledgement

We thank Taesung Park, Zhixin Shu, Muyang Li, and Han Cai for the helpful discussion. Part of the work is supported by NSF CAREER Award #1943349, Adobe, Naver Corporation, and MIT-IBM Watson AI Lab.

The codebase is build upon a PyTorch implementation of StyleGAN2: rosinality/stylegan2-pytorch. For editing direction extraction, we refer to InterFaceGAN.

Owner
MIT HAN Lab
Accelerating Deep Learning Computing
MIT HAN Lab
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
A simple AI that will give you si ple task and this is made with python

Crystal-AI A simple AI that will give you si ple task and this is made with python Prerequsites: Python3.6.2 pyttsx3 pip install pyttsx3 pyaudio pip i

CrystalAnd 1 Dec 25, 2021
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language Models"

GreaseLM: Graph REASoning Enhanced Language Models This repo provides the source code & data of our paper "GreaseLM: Graph REASoning Enhanced Language

137 Jan 02, 2023
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022