Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

Overview

alt text

The Face Synthetics dataset

Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

It was introduced in our paper Fake It Till You Make It: Face analysis in the wild using synthetic data alone.

Our dataset contains:

  • 100,000 images of faces at 512 x 512 pixel resolution
  • 70 standard facial landmark annotations
  • per-pixel semantic class anotations

It can be used to train machine learning systems for face-related tasks such as landmark localization and face parsing, showing that synthetic data can both match real data in accuracy as well as open up new approaches where manual labelling would be impossible.

Some images also include hands and off-center distractor faces in addition to primary faces centered in the image.

The Face Synthetics dataset can be used for non-commercial research, and is licensed under the license found in LICENSE.txt.

Downloading the dataset

A sample dataset with 100 images (34MB) can be downloaded from here

A sample dataset with 1000 images (320MB) can be downloaded from here

A full dataset of 100,000 images (32GB) can be downloaded from here

Dataset layout

The Face Synthetics dataset is a single .zip file containing color images, segmentation images, and 2D landmark coordinates in a text file.

dataset.zip
├── {frame_id}.png        # Rendered image of a face
├── {frame_id}_seg.png    # Segmentation image, where each pixel has an integer value mapping to the categories below
├── {frame_id}_ldmks.txt  # Landmark annotations for 70 facial landmarks (x, y) coordinates for every row

Our landmark annotations follow the 68 landmark scheme from iBUG with two additional points for the pupil centers. Please note that our 2D landmarks are projections of 3D points and do not follow the outline of the face/lips/eyebrows in the way that is common from manually annotated landmarks. They can be thought of as an "x-ray" version of 2D landmarks.

Each pixel in the segmentation image will belong to one of the following classes:

BACKGROUND = 0
SKIN = 1
NOSE = 2
RIGHT_EYE = 3
LEFT_EYE = 4
RIGHT_BROW = 5
LEFT_BROW = 6
RIGHT_EAR = 7
LEFT_EAR = 8
MOUTH_INTERIOR = 9
TOP_LIP = 10
BOTTOM_LIP = 11
NECK = 12
HAIR = 13
BEARD = 14
CLOTHING = 15
GLASSES = 16
HEADWEAR = 17
FACEWEAR = 18
IGNORE = 255

Pixels marked as IGNORE should be ignored during training.

Notes:

  • Opaque eyeglass lenses are labeled as GLASSES, while transparent lenses as the class behind them.
  • For bushy eyebrows, a few eyebrow pixels may extend beyond the boundary of the face. These pixels are labelled as IGNORE.

Disclaimer

Some of our rendered faces may be close in appearance to the faces of real people. Any such similarity is naturally unintentional, as it would be in a dataset of real images, where people may appear similar to others unknown to them.

Generalization to real data

For best results, we suggest you follow the methodology described in our paper (citation below). Especially note the need for 1) data augmentation; 2) use of a translation layer if evaluating on real data benchmarks that contain different types of annotations.

Our dataset strives to be as diverse as possible and generalizes to real test data as described in the paper. However, you may encounter situations that it does not cover and/or where generalization is less successful. We recommend that machine learning practitioners always test models on real data that is representative of the target deployment scenario.

Citation

If you use the Face Synthetics Dataset your research, please cite the following paper:

@misc{wood2021fake,
    title={Fake It Till You Make It: Face analysis in the wild using synthetic data alone},
    author={Erroll Wood and Tadas Baltru\v{s}aitis and Charlie Hewitt and Sebastian Dziadzio and Matthew Johnson and Virginia Estellers and Thomas J. Cashman and Jamie Shotton},
    year={2021},
    eprint={2109.15102},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et al. 2020

README This is the official Pytorch implementation of "Lung Segmentation from Chest X-rays using Variational Data Imputation", Raghavendra Selvan et a

Raghav 42 Dec 15, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Learning Tracking Representations via Dual-Branch Fully Transformer Networks

Learning Tracking Representations via Dual-Branch Fully Transformer Networks DualTFR ⭐ We achieves the runner-ups for both VOT2021ST (short-term) and

phiphi 19 May 04, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
The project of phase's key role in complex and real NN

Phase-in-NN This is the code for our project at Princeton (co-authors: Yuqi Nie, Hui Yuan). The paper title is: "Neural Network is heterogeneous: Phas

YuqiNie-lab 1 Nov 04, 2021
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021