Tech Resources for Academic Communities

Overview

Tech Resources for Academic Communities

The content and the code in this repo are intended for computer science instruction as a collaboration with Microsoft developer advocates and Faculty / Students under the MIT license. Please check back regularly for updated versions.

Source: https://github.com/microsoft/AcademicContent

This repo provides technical resources to help students and faculty learn about Azure and teach others. The content covers cross-platform scenarios in AI and machine learning, data science, web development, mobile app dev, internet of things, and DevOps. It also includes interesting tech talks and engaging, fun tech challenges that Microsoft leads at student hackathons and Imagine Cup.

Important: We are migrating to Microsoft Learn | If you can't find what you're looking for in this repo, check out the labs on Microsoft Learn too. Many of these labs have their own built-in Azure sandbox making it easier for faculty and students to learn without requiring an Azure Subscription.

Students can get free Azure credits to explore these resources here:

  • Azure for Students | $100 in Azure for 12 months with free tier of services - no credit card required with academic verification
  • Azure for Students Starter | use select Azure products like App Services for free - no credit card required with academic verification
  • Azure Free Account | $200 in Azure for one month with free tier of services - requires a credit card and probably the best fit for faculty evaluating Azure for course instruction unless your organization has a grant or enterprise agreement.

Your feedback is appreciated - please fork this repo and contribute!

To report any issues, please log a GitHub issue. Include the content section, module number, and title, along with any error messages and screenshots.

Learn by doing with our hands-on labs

Check out our hands-on labs that can be used on your own or in the classroom. They also make for fun, easy-to-run workshops!

Lab Categories Description
AI and Machine Learning Build bots and apps backed by AI and ML using Azure and Azure Cognitive Services.
Azure Services Deploy serverless code with Azure Functions, run Docker containers, use Azure to build Blockchain networks and more.
Big Data and Analytics Spin up Apache Spark Clusters, Use Hadoop to extract information from big datasets or use Power BI to explore and visualize data.
Deep Learning These labs build on each other to introduce tools and libraries for AI. They're labeled 200-400 level to indicate level of technical detail.
Internet-of-Things Use Azure to collect and stream IoT data securely and in real time.
Web Development Quickly create scalable web apps using Node, PHP, MySQL on easy-to-use tools like Visual Studio Code and GitHub.
Web Development for Beginners, 24 lessons A curriculum with 24 lessons, assignments and five projects to build. Covers HTML, CSS and JavaScript. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
Machine Learning for Beginners, 25 lessons A curriculum with 25 lessons with assignments covering classic Machine Learning primarily using Scikit-learn. Covers Regression, Classification, Clustering, NLP, Time Series Forecasting, and Reinforcement Learning, with two Applied ML lessons. Also includes 50 Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning
IoT for Beginners, 24 lessons A curriculum with 24 lessons with assignments all about the Internet of Things. The projects cover the journey of food from farm to table. This includes farming, logistics, manufacturing, retail and consumer - all popular industry areas for IoT devices. Also includes Pre- and Post- Quizzes. Made with teachers in mind, or as self paced learning

Host great events and hacks

Want to host an event at your school? We can help with the resources below!

Resource
Events and Hacks These are keynotes and hack workshops that Microsoft has produced for student events. Feel free to use. Most slides also contain suggested demos and talk tracks. There's also pre-packaged coding challenge to help students explore machine learning.
Tech Talks One-off presentations on emerging or innovative tech topics with speakers notes and demos.

Other available academic resources

We also have other great educator content to help you use Azure in the classroom.

Resource
Scripts Scripts and templates built in PowerShell or BASH to help set up your classroom environment.
Azure Guides Discover what Azure technologies apply to different teaching areas.
Course Content Learning modules to complement existing course instruction. Includes presentations, speaker notes, and hands-on labs.

Attend our Reactor Workshops

We focus on developing high-quality content for all Cloud, Data Science, Machine Learning, and AI learners. Through workshops, tech talks, and hackathons hosted around the world, come learn and apply new skills to what you're interested in!

Resource
Reactor Workshops Content for our First Party Reactor Workshops can be found here.
Reactor Locations Find out schedules, learn more about each space, and see where we are opening a Reactor near you!

Content from other sources

Resource
Azure Architecture Center Cloud architecture guides, reference architectures, and example workloads for how to put the pieces of the cloud together
Microsoft AI School Content for students, developers and data scientists to get started and dive deep into the Microsoft AI platform and deep learning.
Microsoft Learn Hundreds of free online training by world-class experts to help you build your technical skills on the latest Microsoft technologies.
Technical Community Content Workshops from the community team.
Research case studies Case studies of faculty using Azure for Research collected by Microsoft Research. Submit your own Azure research stories here too!
Microsoft Research Data Sets Data sets shared by Microsoft Research for academic use.
Machine Learning Data Sets Data sets shared by Azure Machine Learning team to help explore machine learning.
MS MARCO Microsoft MAchine Reading COmprehension Dataset generated from real Bing user queries and search results.
IoT School Resources for learning about Azure IoT solutions, platform services and industry-leading edge technologies.
Azure IoT curriculum resources Hands on labs and content for students and educators to learn and teach the Internet of Things at schools, universities, coding clubs, community colleges and bootcamps
AI Labs Experience, learn and code the latest breakthrough AI innovations by Microsoft.
Channel9 Videos for developers from people building Microsoft products and services.

Structure of the docs part of this repository

This repository is designed to build a VuePress site that is hosted using GitHub Pages.

The content of this site lives in the docs folder. The main page is constructed from the README.md in that folder, and the side bar is made of the contents of the content folder.

Building the docs

To build these docs, you will need npm installed. Once you have this installed, install VuePress:

npm install vuepress

To build the docs, use the deploy.sh script. This script will build the docs, then push them to the gh-pages branch of a given fork of this project. You pass the GitHub user/org name to the script. This way you can test the build offline, then push to the parent as part of an automated script.

deploy.sh <org>

Contributing

We 💖 love 💖 contributions. In fact, we want students, faculty, researchers and life-long learners to contribute to this repo, either by adding links to existing content, or building content. Please read the contributing guide to learn more.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
In this project we use both Resnet and Self-attention layer for cat, dog and flower classification.

cdf_att_classification classes = {0: 'cat', 1: 'dog', 2: 'flower'} In this project we use both Resnet and Self-attention layer for cdf-Classification.

3 Nov 23, 2022
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022