This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Overview

Merantix-Labs: DAAIN

This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at arxiv.

Assumptions

There are assumptions:

  • The training data PerturbedDataset makes some assumptions about the data:
    • the ignore_index is 255
    • num_classes = 19
    • the images are resized with size == 512

Module Overview

A selection of the files with some pointers what to find where

├── configs                                   # The yaml configs
│   ├── activation_spaces
│   │   └── esp_net_256_512.yaml
│   ├── backbone
│   │   ├── esp_dropout.yaml
│   │   └── esp_net.yaml
│   ├── dataset_paths
│   │   ├── bdd100k.yaml
│   │   └── cityscapes.yaml
│   ├── data_creation.yaml                    # Used to create the training and testing data in one go
│   ├── detection_inference.yaml              # Used for inference
│   ├── detection_training.yaml               # Used for training
│   ├── esp_dropout_training.yaml             # Used to train the MC dropout baseline
│   └── paths.yaml
├── README.md                                 # This file!
├── requirements.in                           # The requirements
├── setup.py
└── src
   └── daain
       ├── backbones                          # Definitions of the backbones, currently only a slighlty modified version
       │   │                                  # of the ESPNet was tested
       │   ├── esp_dropout_net
       │   │   ├── esp_dropout_net.py
       │   │   ├── __init__.py
       │   │   ├── lightning_module.py
       │   │   └── trainer
       │   │       ├── criteria.py
       │   │       ├── data.py
       │   │       ├── dataset_collate.py
       │   │       ├── data_statistics.py
       │   │       ├── __init__.py
       │   │       ├── iou_eval.py
       │   │       ├── README.md
       │   │       ├── trainer.py            # launch this file to train the ESPDropoutNet
       │   │       ├── transformations.py
       │   │       └── visualize_graph.py
       │   └── esp_net
       │       ├── espnet.py                 # Definition of the CustomESPNet
       │       └── layers.py
       ├── baseline
       │   ├── maximum_softmax_probability.py
       │   ├── max_logit.py
       │   └── monte_carlo_dropout.py
       ├── config_schema
       ├── constants.py                      # Some constants, the last thing to refactor...
       ├── data                              # General data classes
       │   ├── datasets
       │   │   ├── bdd100k_dataset.py
       │   │   ├── cityscapes_dataset.py
       │   │   ├── labels
       │   │   │   ├── bdd100k.py
       │   │   │   ├── cityscape.py
       │   │   └── semantic_segmentation_dataset.py
       │   ├── activations_dataset.py        # This class loads the recorded activations
       │   └── perturbed_dataset.py          # This class loads the attacked images
       ├── model
       │   ├── aggregation_mode.py           # Not interesting for inference
       │   ├── classifiers.py                # All classifiers used are defined here
       │   ├── model.py                      # Probably the most important module. Check this for an example on how
       │   │                                 # to used the detection model and how to load the parts
       │   │                                 # (normalising_flow & classifier)
       │   └── normalising_flow
       │       ├── coupling_blocks
       │       │   ├── attention_blocks
       │       │   ├── causal_coupling_bock.py  # WIP
       │       │   └── subnet_constructors.py
       │       └── lightning_module.py
       ├── scripts
       │   └── data_creation.py              # Use this file to create the training and testing data
       ├── trainer                           # Trainer of the full detection model
       │   ├── data.py                       # Loading the data...
       │   └── trainer.py
       ├── utils                             # General utils
       └── visualisations                    # Visualisation helpers

Parts

In general the model consists of two parts:

  • Normalising FLow
  • Classifier / Scoring method

Both have to be trained separately, depending on the classifier. Some are parameter free (except for the threshold).

The general idea can be summarised:

  1. Record the activations of the backbone model at specific locations during a forward pass.
  2. Transform the recorded activations using a normalising flow and map them to a standard Gaussian for each variable.
  3. Apply some simple (mostly distance based) classifier on the transformed activations to get the anomaly score.

Training & Inference Process

  1. Generate perturbed and adversarial images. We do not provide code for this step.
  2. Generate the activations using src/daain/scripts/data_creation.py
  3. Train the detection model using src/daain/trainer/trainer.py
  4. Use src/daain/model/model.py to load the trained model and use it to get the anomaly score (the probability that the input was anomalous).
Owner
Merantix
Merantix
With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want.

Virtual Keyboard With the virtual keyboard, you can write on the real time images by combining the thumb and index fingers on the letter you want. At

Güldeniz Bektaş 5 Jan 23, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
TensorFlow Implementation of FOTS, Fast Oriented Text Spotting with a Unified Network.

FOTS: Fast Oriented Text Spotting with a Unified Network I am still working on this repo. updates and detailed instructions are coming soon! Table of

Masao Taketani 52 Nov 11, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Apply different text recognition services to images of handwritten documents.

Handprint The Handwritten Page Recognition Test is a command-line program that invokes HTR (handwritten text recognition) services on images of docume

Caltech Library 117 Jan 02, 2023
The first open-source library that detects the font of a text in a image.

Typefont Typefont is an experimental library that detects the font of a text in a image. Usage Import the main function and invoke it like in the foll

Vasile Pește 1.6k Feb 24, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
FastOCR is a desktop application for OCR API.

FastOCR FastOCR is a desktop application for OCR API. Installation Arch Linux fastocr-git @ AUR Build from AUR or install with your favorite AUR helpe

Bruce Zhang 58 Jan 07, 2023
Multi-choice answer sheet correction system using computer vision with opencv & python.

Multi choice answer correction 🔴 5 answer sheet samples with a specific solution for detecting answers and sheet correction. 🔴 By running the soluti

Reza Firouzi 7 Mar 07, 2022
OCR engine for all the languages

Description kraken is a turn-key OCR system optimized for historical and non-Latin script material. kraken's main features are: Fully trainable layout

431 Jan 04, 2023
Image processing is one of the most common term in computer vision

Image processing is one of the most common term in computer vision. Computer vision is the process by which computers can understand images and videos, and how they are stored, manipulated, and retri

Happy N. Monday 3 Feb 15, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023
【Auto】原神⭐钓鱼辅助工具 | 自动收竿、校准游标 | ✨您只需要抛出鱼竿,我们会帮你完成一切✨

原神钓鱼辅助工具 ✨ 作者正在努力重构代码中……会尽快带给大家一个更完美的脚本 ✨ 「您只需抛出鱼竿,然后我们会帮您搞定一切」 如果你觉得这个脚本好用,请点一个 Star ⭐ ,你的 Star 就是作者更新最大的动力 点击这里 查看演示视频 ✨ 欢迎大家在 Issues 中分享自己的配置文件 ✨ ✨

261 Jan 02, 2023
A collection of resources (including the papers and datasets) of OCR (Optical Character Recognition).

OCR Resources This repository contains a collection of resources (including the papers and datasets) of OCR (Optical Character Recognition). Contents

Zuming Huang 363 Jan 03, 2023
Isearch (OSINT) 🔎 Face recognition reverse image search on Instagram profile feed photos.

isearch is an OSINT tool on Instagram. Offers a face recognition reverse image search on Instagram profile feed photos.

Malek salem 20 Oct 25, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Rest API Written In Python To Classify NSFW Images.

✨ NSFW Classifier API ✨ Rest API Written In Python To Classify NSFW Images. Fastest Solution If you don't want to selfhost it, there's already an inst

Akshay Rajput 23 Dec 30, 2022