Deep Learning Emotion decoding using EEG data from Autism individuals

Overview

Deep Learning Emotion decoding using EEG data from Autism individuals

This repository includes the python and matlab codes using for processing EEG 2D images on a customized Convolutional Neural Network (CNN) to decode emotion visual stimuli on individuals with and without Autism Spectrum Disorder (ASD).

If you would like to use this repository to replicate our experiments with this data or use your our own data, please cite the following paper, more details about this code and implementation are described there as well:

Mayor Torres, J.M. ¥, Clarkson, T.¥, Hauschild, K.M., Luhmann, C.C., Lerner, M.D., Riccardi, G., Facial emotions are accurately encoded in the brains of those with autism: A deep learning approach. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,(2021).

Requirements

  • Tensorflow >= v1.20
  • sklearn
  • subprocess
  • numpy
  • csv
  • Matlab > R2018b

For the python code we provide:

1. A baseline code to evaluate a Leave-One-Trial-Out cross-validation from two csv files. One including all the trials for train with their corresponding labels and other with the test features of the single trial you want to evaluate. The test and train datafile should have an identifier to be paired by the for loop used for the cross validation. The code to run the baseline classifiier is located on the folder classifier_EEG_call.

Pipeline for EEG Emotion Decoding

To run the classifier pipeline simply download the .py files on the folder classifier_EEG_call and execute the following command on your bash prompt:

   python LOTO_lauch_emotions_test.py "data_path_file_including_train_test_files"

Please be sure your .csv files has a flattened time-points x channels EEG image after you remove artifacts and noise from the signal. Using the ADJUST EEGlab pipeline preferrably (https://sites.google.com/a/unitn.it/marcobuiatti/home/software/adjust).

The final results will be produced in a txt file in the output folder of your choice. Some metrics obtained from a sample of 88 ADOS-2 diagnosed participants 48 controls, and 40 ASD are the following:

Metrics/Groups FER CNN
Acc Pre Re F1 Acc Pre Re F1
TD 0.813 0.808 0.802 0.807 0.860 0.864 0.860 0.862
ASD* 0.776 0.774 0.768 0.771 0.934 0.935 0.933 0.934

Face Emotion Recognition (FER) task performance is denoted as the human performance obtained when labeling the same stimuli presented to obtain the EEG activity.

2. A code for using the package the iNNvestigate package (https://github.com/albermax/innvestigate) Saliency Maps and unify them from the LOTO crossvalidation mentioned in the first item. Code is located in the folder iNNvestigate_evaluation

To run the investigate evaluation simply download the .py files on the folder iNNvestigate_evaluation and execute the following command on your bash prompt:

   python LOTO_lauch_emotions_test_innvestigate.py "data_path_file_including_train_test_files" num_method

The value num_method is defined based on the order iNNvestigate package process saliency maps. For our specific case the number concordance is:

'Original Image'-> 0 'Gradient' -> 1 'SmoothGrad'-> 2 'DeconvNet' -> 3 'GuidedBackprop' -> 4 'PatterNet' -> 5 'PatternAttribution' -> 6 'DeepTaylor' -> 7 'Input * Gradient' -> 8 'Integrated Gradients' -> 9 'LRP-epsilon' -> 10 'LRP-Z' -> 11 'LRP-APresetflat' -> 12 'LRP-BPresetflat' -> 13

An example from saliency maps obtained from LRP-B preset are shown below ->

significant differences are observed on 750-1250 ms relative to the onset between the relevance of Controls and ASD groups!

alt text alt text alt text

For the Matlab code we provide the repository for reading the resulting output performance files for the CNN baseline classifier Reading_CNN_performances, and for the iNNvestigate methods using the same command call due to the output file is composed of the same syntax.

To run a performance checking first download the files on Reading_CNN_performances folder and run the following command on your Matlab prompt sign having the results the .csv files on a folder of your choice.

   read_perf_convnets_subjects('suffix_file','performance_data_path')
Owner
Juan Manuel Mayor Torres
I'm Research Associate in Cardiff University, UK. I'm interested in characterizing behavioral/neural outcome measures on neural representations using ML
Juan Manuel Mayor Torres
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Lightwood is Legos for Machine Learning.

Lightwood is like Legos for Machine Learning. A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glu

MindsDB Inc 312 Jan 08, 2023
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022