LibMTL: A PyTorch Library for Multi-Task Learning

Overview

LibMTL

Documentation Status License: MIT PyPI version Supported Python versions Downloads CodeFactor Maintainability Made With Love

LibMTL is an open-source library built on PyTorch for Multi-Task Learning (MTL). See the latest documentation for detailed introductions and API instructions.

Star us on GitHub — it motivates us a lot!

Table of Content

Features

  • Unified: LibMTL provides a unified code base to implement and a consistent evaluation procedure including data processing, metric objectives, and hyper-parameters on several representative MTL benchmark datasets, which allows quantitative, fair, and consistent comparisons between different MTL algorithms.
  • Comprehensive: LibMTL supports 84 MTL models combined by 7 architectures and 12 loss weighting strategies. Meanwhile, LibMTL provides a fair comparison on 3 computer vision datasets.
  • Extensible: LibMTL follows the modular design principles, which allows users to flexibly and conveniently add customized components or make personalized modifications. Therefore, users can easily and fast develop novel loss weighting strategies and architectures or apply the existing MTL algorithms to new application scenarios with the support of LibMTL.

Overall Framework

framework.

  • Config Module: Responsible for all the configuration parameters involved in the running framework, including the parameters of optimizer and learning rate scheduler, the hyper-parameters of MTL model, training configuration like batch size, total epoch, random seed and so on.
  • Dataloaders Module: Responsible for data pre-processing and loading.
  • Model Module: Responsible for inheriting classes architecture and weighting and instantiating a MTL model. Note that the architecture and the weighting strategy determine the forward and backward processes of the MTL model, respectively.
  • Losses Module: Responsible for computing the loss for each task.
  • Metrics Module: Responsible for evaluating the MTL model and calculating the metric scores for each task.

Supported Algorithms

LibMTL currently supports the following algorithms:

  • 12 loss weighting strategies.
Weighting Strategy Venues Comments
Equally Weighting (EW) - Implemented by us
Gradient Normalization (GradNorm) ICML 2018 Implemented by us
Uncertainty Weights (UW) CVPR 2018 Implemented by us
MGDA NeurIPS 2018 Referenced from official PyTorch implementation
Dynamic Weight Average (DWA) CVPR 2019 Referenced from official PyTorch implementation
Geometric Loss Strategy (GLS) CVPR 2019 workshop Implemented by us
Projecting Conflicting Gradient (PCGrad) NeurIPS 2020 Implemented by us
Gradient sign Dropout (GradDrop) NeurIPS 2020 Implemented by us
Impartial Multi-Task Learning (IMTL) ICLR 2021 Implemented by us
Gradient Vaccine (GradVac) ICLR 2021 Spotlight Implemented by us
Conflict-Averse Gradient descent (CAGrad) NeurIPS 2021 Referenced from official PyTorch implementation
Random Loss Weighting (RLW) arXiv Implemented by us
  • 7 architectures.
Architecture Venues Comments
Hrad Parameter Sharing (HPS) ICML 1993 Implemented by us
Cross-stitch Networks (Cross_stitch) CVPR 2016 Implemented by us
Multi-gate Mixture-of-Experts (MMoE) KDD 2018 Implemented by us
Multi-Task Attention Network (MTAN) CVPR 2019 Referenced from official PyTorch implementation
Customized Gate Control (CGC) ACM RecSys 2020 Best Paper Implemented by us
Progressive Layered Extraction (PLE) ACM RecSys 2020 Best Paper Implemented by us
DSelect-k NeurIPS 2021 Referenced from official TensorFlow implementation
  • 84 combinations of different architectures and loss weighting strategies.

Installation

The simplest way to install LibMTL is using pip.

pip install -U LibMTL

More details about environment configuration is represented in Docs.

Quick Start

We use the NYUv2 dataset as an example to show how to use LibMTL.

Download Dataset

The NYUv2 dataset we used is pre-processed by mtan. You can download this dataset here.

Run a Model

The complete training code for the NYUv2 dataset is provided in examples/nyu. The file train_nyu.py is the main file for training on the NYUv2 dataset.

You can find the command-line arguments by running the following command.

python train_nyu.py -h

For instance, running the following command will train a MTL model with EW and HPS on NYUv2 dataset.

python train_nyu.py --weighting EW --arch HPS --dataset_path /path/to/nyuv2 --gpu_id 0 --scheduler step

More details is represented in Docs.

Citation

If you find LibMTL useful for your research or development, please cite the following:

@misc{LibMTL,
 author = {Baijiong Lin and Yu Zhang},
 title = {LibMTL: A PyTorch Library for Multi-Task Learning},
 year = {2021},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/median-research-group/LibMTL}}
}

Contributors

LibMTL is developed and maintained by Baijiong Lin and Yu Zhang.

Contact Us

If you have any question or suggestion, please feel free to contact us by raising an issue or sending an email to [email protected].

Acknowledgements

We would like to thank the authors that release the public repositories (listed alphabetically): CAGrad, dselect_k_moe, MultiObjectiveOptimization, and mtan.

License

LibMTL is released under the MIT license.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 1.9.0 ubuntu20/python3.9/pip ubuntu20/python3.8/p

ESPnet 5.9k Jan 04, 2023
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
clustering moroccan stocks time series data using k-means with dtw (dynamic time warping)

Moroccan Stocks Clustering Context Hey! we don't always have to forecast time series am I right ? We use k-means to cluster about 70 moroccan stock pr

Ayman Lafaz 7 Oct 18, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
Hand-distance-measurement-game - Hand Distance Measurement Game

Hand Distance Measurement Game This is program is made to calculate the distance

Priyansh 2 Jan 12, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Pytorch Medical Segmentation Read Chinese Introduction:Here! Recent Updates 2021.1.8 The train and test codes are released. 2021.2.6 A bug in dice was

EasyCV-Ellis 618 Dec 27, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022