AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

Overview

AnimalAI 3

AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research towards unlocking cognitive capabilities and better understanding the space of possible minds. It is designed to facilitate testing across animals, humans, and AI.

This Repo

This repo contains the AnimalAI environment, some introductory python scripts for interacting with it, as well as the 900 tasks which were used in the original Animal-AI Olympics competition (and some others for demonstration purposes). Details of the tasks can be found on the AAI website where they can also be played and competition entries watched.

The environment is built using Unity ml-agents release 2.1.0-exp.1 (python version 0.27.0).

The AnimalAI environment and packages are currently only tested on linux (Ubuntu 20.04.2 LTS) with python 3.8 but have been reported working with python 3.6+, other linux distros and Windows and Mac.

The Unity Project for the environment is available here.

Installing

To get started you will need to:

  1. Clone this repo.
  2. Install the animalai python package and requirements by running pip install -e animalai from the root folder.
  3. Download the environment for your system:
OS Environment link
Linux v3.0
Mac v3.0
Windows v3.0

(Old v2.x versions can be found here)

Unzip the entire content of the archive to the (initially empty) env folder. On linux you may have to make the file executable by running chmod +x env/AnimalAI.x86_64. Note that the env folder should contain the AnimalAI.exe/.x86_84/.app depending on your system and any other folders in the same directory in the zip file.

Tutorials and Examples

Some example scripts to get started can be found in the examples folder. The following docs provide information for some common uses of the environment.

Manual Control

If you launch the environment directly from the executable or through the play.py script it will launch in player mode. Here you can control the agent with the following:

Keyboard Key Action
W move agent forwards
S move agent backwards
A turn agent left
D turn agent right
C switch camera
R reset environment

Citing

If you use the Animal-AI environment in your work you can cite the environment paper:

Crosby, M., Beyret, B., Shanahan, M., Hernández-Orallo, J., Cheke, L. & Halina, M.. (2020). The Animal-AI Testbed and Competition. Proceedings of the NeurIPS 2019 Competition and Demonstration Track, in Proceedings of Machine Learning Research 123:164-176 Available here.

 @InProceedings{pmlr-v123-crosby20a, 
    title = {The Animal-AI Testbed and Competition}, 
    author = {Crosby, Matthew and Beyret, Benjamin and Shanahan, Murray and Hern\'{a}ndez-Orallo, Jos\'{e} and Cheke, Lucy and Halina, Marta}, 
    booktitle = {Proceedings of the NeurIPS 2019 Competition and Demonstration Track}, 
    pages = {164--176}, 
    year = {2020}, 
    editor = {Hugo Jair Escalante and Raia Hadsell}, 
    volume = {123}, 
    series = {Proceedings of Machine Learning Research}, 
    month = {08--14 Dec}, 
    publisher = {PMLR}, 
} 

Unity ML-Agents

The Animal-AI Olympics was built using Unity's ML-Agents Toolkit.

Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D. (2018). Unity: A General Platform for Intelligent Agents. arXiv preprint arXiv:1809.02627

Further the documentation for mlagents should be consulted if you want to make any changes.

Version History

  • v3.0 Note that due to the changes to controls and graphics agents trained on previous versions might not preform the same
    • Updated agent handling. The agent now comes to a stop more quickly when not moving forwards or backwards and accelerates slightly faster.
    • Added new objects, spawners, signs, goal types (see doc)
    • Added 3 animal skins to the player character.
    • Updated graphics for many objects. Default shading on many previously plain objects make it easier to determine location(s)/velocity.
    • Many improvements to documentation and examples.
    • Upgraded to Mlagents 2.1.0-exp.1 (ml-agents python version 0.27.0)
    • Fixed various bugs.
  • v2.2.3
    • Now you can specify multiple different arenas in a single yml config file ant the environment will cycle through them each time it resets
  • v2.2.2
    • Low quality version with improved fps. (will work on further improvments to graphics & fps later)
  • v2.2.1
    • Improve UI scaling wrt. screen size
    • Fixed an issue with cardbox objects spawning at the wrong sizes
    • Fixed an issue where the environment would time out after the time period even when health > 0 (no longer intended behaviour)
    • Improved Death Zone shader for weird Zone sizes
  • v2.2.0 Health and Basic Scripts
    • Switched to health-based system (rewards remain the same).
    • Updated overlay in play mode.
    • Allow 3D hot zones and death zones and make them 3D by default in old configs.
    • Added rewards that grow/decay (currently not configurable but will be added in next update).
    • Added basic Gym Wrapper.
    • Added basic heuristic agent for benchmarking and testing.
    • Improved all other python scripts.
    • Fixed a reset environment bug when resetting during training.
    • Added the ability to set the DecisionPeriod (frameskip) when instantiating and environment.
  • v2.1.1 bugfix
    • Fixed raycast length being less then diagonal length of standard arena
  • v2.1 beta release
    • Upgraded to ML-Agents release 2 (0.26.0)
    • New features
      • Added raycast observations
      • Added agent global position to observations
Owner
Matthew Crosby
Matthew Crosby
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022