Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Overview

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation

In this repo, we provide the code for our paper : "Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?", available at https://arxiv.org/abs/2012.06166:

Getting Started

Minimum requirements

  1. Software :
  • torch==1.7.0
  • numpy==1.18.4
  • cv2==4.2.0
  • pyyaml==5.3.1

For both training and testing, metrics monitoring is done through visdom_logger (https://github.com/luizgh/visdom_logger). To install this package with pip, use the following command:

pip install git+https://github.com/luizgh/visdom_logger.git
  1. Hardware : A 11 GB+ CUDA-enabled GPU

Download data

All pre-processed from Google Drive

We provide the versions of Pascal-VOC 2012 and MS-COCO 2017 used in this work at https://drive.google.com/file/d/1Lj-oBzBNUsAqA9y65BDrSQxirV8S15Rk/view?usp=sharing. You can download the full .zip and directly extract it at the root of this repo.

If the previous download failed

Here is the structure of the data folder for you to reproduce:

data
├── coco
│   ├── annotations
│   ├── train
│   ├── train2014
│   ├── val
│   └── val2014
└── pascal
|    ├── JPEGImages
|    └── SegmentationClassAug

Pascal : The JPEG images can be found in the PascalVOC 2012 toolkit to be downloaded at PascalVOC2012 and SegmentationClassAug (pre-processed ground-truth masks).

Coco : Coco 2014 train, validation images and annotations can be downloaded at Coco. Once this is done, you will have to generate the subfolders coco/train and coco/val (ground truth masks). Both folders can be generated by executing the python script data/coco/create_masks.py (note that the script uses the package pycocotools that can be found at https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools):

python

cd data/coco
python create_masks.py

About the train/val splits

The train/val splits are directly provided in lists/. How they were obtained is explained at https://github.com/Jia-Research-Lab/PFENet

Download pre-trained models

Pre-trained backbones

First, you will need to download the ImageNet pre-trained backbones at https://drive.google.com/drive/folders/1Hrz1wOxOZm4nIIS7UMJeL79AQrdvpj6v and put them under initmodel/. These will be used if you decide to train your models from scratch.

Pre-trained models

We directly provide the full pre-trained models at https://drive.google.com/file/d/1iuMAo5cJ27oBdyDkUI0JyGIEH60Ln2zm/view?usp=sharing. You can download them and directly extract them at the root of this repo. This includes Resnet50 and Resnet101 backbones on Pascal-5i, and Resnet50 on Coco-20i.

Overview of the repo

Data are located in data/. All the code is provided in src/. Default configuration files can be found in config_files/. Training and testing scripts are located in scripts/. Lists/ contains the train/validation splits for each dataset.

Training (optional)

If you want to use the pre-trained models, this step is optional. Otherwise, you can train your own models from scratch with the scripts/train.sh script, as follows.

bash scripts/train.sh {data} {fold} {[gpu_ids]} {layers}

For instance, if you want to train a Resnet50-based model on the fold-0 of Pascal-5i on GPU 1, use:

bash scripts/train.sh pascal 0 [1] 50

Note that this code supports distributed training. If you want to train on multiple GPUs, you may simply replace [1] in the previous examples with the list of gpus_id you want to use.

Testing

To test your models, use the scripts/test.sh script, the general synthax is:

bash scripts/test.sh {data} {shot} {[gpu_ids]} {layers}

This script will test successively on all folds of the current dataset. Below are presented specific commands for several experiments.

Pascal-5i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 59.8 / 64.6 68.3 / 71.4 62.1 / 71.1 48.5 / 59.3 59.7 / 66.6
Oracle-RePRI Resnet-50 72.4 / 75.1 78.0 / 80.8 77.1 / 81.4 65.8 / 74.4 73.3 / 77.9
RePRI Resnet-101 59.6 / 66.2 68.3 / 71.4 62.2 / 67.0 47.2 / 57.7 59.4 / 65.6
Oracle-RePRI Resnet-101 73.9 / 76.8 79.7 / 81.7 76.1 / 79.5 65.1 / 74.5 73.7 / 78.1

Command:

bash scripts/test.sh pascal 1 [0] 50  # 1-shot
bash scripts/test.sh pascal 5 [0] 50  # 5-shot

Coco-20i

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 32.0 / 39.3 38.7 / 45.4 32.7 / 39.7 33.1 / 41.8 34.1/41.6
Oracle-RePRI Resnet-50 49.3 / 51.5 51.4 / 60.8 38.2 / 54.7 41.6 / 55.2 45.1 / 55.5

Command :

bash scripts/test.sh coco 1 [0] 50  # 1-shot
bash scripts/test.sh coco 5 [0] 50  # 5-shot

Coco-20i -> Pascal-VOC

The folds used for cross-domain experiments are presented in the image below:

Results :

(1 shot/5 shot) Arch Fold-0 Fold-1 Fold-2 Fold-3 Mean
RePRI Resnet-50 52.8 / 57.7 64.0 / 66.1 64.1 / 67.6 71.5 / 73.1 63.1 / 66.2
Oracle-RePRI Resnet-50 69.6 / 73.5 71.7 / 74.9 77.6 / 82.2 86.2 / 88.1 76.2 / 79.7

Command :

bash scripts/test.sh coco2pascal 1 [0] 50  # 1-shot
bash scripts/test.sh coco2pascal 5 [0] 50  # 5-shot

Monitoring metrics

For both training and testing, you can monitor metrics using visdom_logger (https://github.com/luizgh/visdom_logger). To install this package, simply clone the repo and install it with pip:

git clone https://github.com/luizgh/visdom_logger.git
pip install -e visdom_logger

Then, you need to start a visdom server with:

python -m visdom.server -port 8098

Finally, add the line visdom_port 8098 in the options in scripts/train.sh or scripts/test.sh, and metrics will be displayed at this port. You can monitor them through your navigator.

Contact

For further questions or details, please post an issue or directly reach out to Malik Boudiaf ([email protected])

Acknowledgments

We gratefully thank the authors of https://github.com/Jia-Research-Lab/PFENet, as well as https://github.com/hszhao/semseg from which some parts of our code are inspired.

Owner
Malik Boudiaf
Malik Boudiaf
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis

Modeling Temporal Concept Receptive Field Dynamically for Untrimmed Video Analysis This is a PyTorch implementation of the model described in our pape

qzhb 6 Jul 08, 2021
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
ICRA 2021 - Robust Place Recognition using an Imaging Lidar

Robust Place Recognition using an Imaging Lidar A place recognition package using high-resolution imaging lidar. For best performance, a lidar equippe

Tixiao Shan 293 Dec 27, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプル

ByteTrack-ONNX-Sample ByteTrack(Multi-Object Tracking by Associating Every Detection Box)のPythonでのONNX推論サンプルです。 ONNXに変換したモデルも同梱しています。 変換自体を試したい方はByteT

KazuhitoTakahashi 16 Oct 26, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Neural style transfer as a class in PyTorch

pt-styletransfer Neural style transfer as a class in PyTorch Based on: https://github.com/alexis-jacq/Pytorch-Tutorials Adds: StyleTransferNet as a cl

Tyler Kvochick 31 Jun 27, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022