MAT: Mask-Aware Transformer for Large Hole Image Inpainting

Related tags

Deep LearningMAT
Overview

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral)

Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia

[Paper]


News

This is the official implementation of MAT. The training and testing code is released. We also provide our masks for CelebA-HQ-val and Places-val here.


Visualization

We present a transformer-based model (MAT) for large hole inpainting with high fidelity and diversity.

large hole inpainting with pluralistic generation

Compared to other methods, the proposed MAT restores more photo-realistic images with fewer artifacts.

comparison with sotas

Usage

  1. Clone the repository.
    git clone https://github.com/fenglinglwb/MAT.git 
  2. Install the dependencies.
    • Python 3.7
    • PyTorch 1.7.1
    • Cuda 11.0
    • Other packages
    pip install -r requirements.txt

Quick Test

  1. We provide models trained on CelebA-HQ and Places365-Standard at 512x512 resolution. Download models from One Drive and put them into the 'pretrained' directory. The released models are retrained, and hence the visualization results may slightly differ from the paper.

  2. Obtain inpainted results by running

    python generate_image.py --network model_path --dpath data_path --outdir out_path [--mpath mask_path]

    where the mask path is optional. If not assigned, random 512x512 masks will be generated. Note that 0 and 1 values in a mask refer to masked and remained pixels.

    For example, run

    python generate_image.py --network pretrained/CelebA-HQ.pkl --dpath test_sets/CelebA-HQ/images --mpath test_sets/CelebA-HQ/masks --outdir samples

    Note. Our implementation only supports generating an image whose size is a multiple of 512. You need to pad or resize the image to make its size a multiple of 512. Please pad the mask with 0 values.

Train

For example, if you want to train a model on Places, run a bash script with

python train.py \
    --outdir=output_path \
    --gpus=8 \
    --batch=32 \
    --metrics=fid36k5_full \
    --data=training_data_path \
    --data_val=val_data_path \
    --dataloader=datasets.dataset_512.ImageFolderMaskDataset \
    --mirror=True \
    --cond=False \
    --cfg=places512 \
    --aug=noaug \
    --generator=networks.mat.Generator \
    --discriminator=networks.mat.Discriminator \
    --loss=losses.loss.TwoStageLoss \
    --pr=0.1 \
    --pl=False \
    --truncation=0.5 \
    --style_mix=0.5 \
    --ema=10 \
    --lr=0.001

Description of arguments:

  • outdir: output path for saving logs and models
  • gpus: number of used gpus
  • batch: number of images in all gpus
  • metrics: find more metrics in 'metrics/metric_main.py'
  • data: training data
  • data_val: validation data
  • dataloader: you can define your own dataloader
  • mirror: use flip augmentation or not
  • cond: use class info, default: false
  • cfg: configuration, find more details in 'train.py'
  • aug: use augmentation of style-gan-ada or not, default: false
  • generator: you can define your own generator
  • discriminator: you can define your own discriminator
  • loss: you can define your own loss
  • pr: ratio of perceptual loss
  • pl: use path length regularization or not, default: false
  • truncation: truncation ratio proposed in stylegan
  • style_mix: style mixing ratio proposed in stylegan
  • ema: exponoential moving averate, ~K samples
  • lr: learning rate

Evaluation

We provide evaluation scrtips for FID/U-IDS/P-IDS/LPIPS/PSNR/SSIM/L1 metrics in the 'evaluation' directory. Only need to give paths of your results and GTs.

Citation

@inproceedings{li2022mat,
    title={MAT: Mask-Aware Transformer for Large Hole Image Inpainting},
    author={Li, Wenbo and Lin, Zhe and Zhou, Kun and Qi, Lu and Wang, Yi and Jia, Jiaya},
    booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
    year={2022}
}

License and Acknowledgement

The code and models in this repo are for research purposes only. Our code is bulit upon StyleGAN2-ADA.

Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022