MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

Overview

MarcoPolo

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering

Overview

MarcoPolo is a novel clustering-independent approach to identifying DEGs in scRNA-seq data. MarcoPolo identifies informative DEGs without depending on prior clustering, and therefore is robust to uncertainties from clustering or cell type assignment. Since DEGs are identified independent of clustering, one can utilize them to detect subtypes of a cell population that are not detected by the standard clustering, or one can utilize them to augment HVG methods to improve clustering. An advantage of our method is that it automatically learns which cells are expressed and which are not by fitting the bimodal distribution. Additionally, our framework provides analysis results in the form of an HTML file so that researchers can conveniently visualize and interpret the results.

Datasets URL
Human liver cells (MacParland et al.) https://chanwkimlab.github.io/MarcoPolo/HumanLiver/
Human embryonic stem cells (The Koh et al.) https://chanwkimlab.github.io/MarcoPolo/hESC/
Peripheral blood mononuclear cells (Zheng et al.) https://chanwkimlab.github.io/MarcoPolo/Zhengmix8eq/

Installation

Currently, MarcoPolo was tested only on Linux machines. Dependencies are as follows:

  • python (3.7)
    • numpy (1.19.5)
    • pandas (1.2.1)
    • scipy (1.6.0)
    • scikit-learn (0.24.1)
    • pytorch (1.4.0)
    • rpy2 (3.4.2)
    • jinja2 (2.11.2)
  • R (4.0.3)
    • Seurat (3.2.1)
    • scran (1.18.3)
    • Matrix (1.3.2)
    • SingleCellExperiment (1.12.0)

Download MarcoPolo by git clone

git clone https://github.com/chanwkimlab/MarcoPolo.git

We recommend using the following pipeline to install the dependencies.

  1. Install Anaconda Please refer to https://docs.anaconda.com/anaconda/install/linux/ make conda environment and activate it
conda create -n MarcoPolo python=3.7
conda activate MarcoPolo
  1. Install Python packages
pip install numpy=1.19.5 pandas=1.21 scipy=1.6.0 scikit-learn=0.24.1 jinja2==2.11.2 rpy2=3.4.2

Also, please install PyTorch from https://pytorch.org/ (If you want to install CUDA-supported PyTorch, please install CUDA in advance)

  1. Install R and required packages
conda install -c conda-forge r-base=4.0.3

In R, run the following commands to install packages.

install.packages("devtools")
devtools::install_version(package = 'Seurat', version = package_version('3.2.1'))
install.packages("Matrix")
install.packages("BiocManager")
BiocManager::install("scran")
BiocManager::install("SingleCellExperiment")

Getting started

  1. Converting scRNA-seq dataset you have to python-compatible file format.

If you have a Seurat object seurat_object, you can save it to a Python-readable file format using the following R codes. An example output by the function is in the example directory with the prefix sample_data. The data has 1,000 cells and 1,500 genes in it.

save_sce <- function(sce,path,lowdim='TSNE'){
    
    sizeFactors(sce) <- calculateSumFactors(sce)
    
    save_data <- Matrix(as.matrix(assay(sce,'counts')),sparse=TRUE)
    
    writeMM(save_data,sprintf("%s.data.counts.mm",path))
    write.table(as.matrix(rownames(save_data)),sprintf('%s.data.row',path),row.names=FALSE, col.names=FALSE)
    write.table(as.matrix(colnames(save_data)),sprintf('%s.data.col',path),row.names=FALSE, col.names=FALSE)
    
    tsne_data <- reducedDim(sce, lowdim)
    colnames(tsne_data) <- c(sprintf('%s_1',lowdim),sprintf('%s_2',lowdim))
    print(head(cbind(as.matrix(colData(sce)),tsne_data)))
    write.table(cbind(as.matrix(colData(sce)),tsne_data),sprintf('%s.metadatacol.tsv',path),row.names=TRUE, col.names=TRUE,sep='\t')    
    write.table(cbind(as.matrix(rowData(sce))),sprintf('%s.metadatarow.tsv',path),row.names=TRUE, col.names=TRUE,sep='\t')    
    
    write.table(sizeFactors(sce),file=sprintf('%s.size_factor.tsv',path),sep='\t',row.names=FALSE, col.names=FALSE)    

}

sce_object <- as.SingleCellExperiment(seurat_object)
save_sce(sce_object, 'example/sample_data')
  1. Running MarcoPolo

Please use the same path argument you used for running the save_sce function above. You can incorporate covariate - denoted as ß in the paper - in modeling the read counts by setting the Covar parameter.

import MarcoPolo.QQscore as QQ
import MarcoPolo.summarizer as summarizer

path='scRNAdata'
QQ.save_QQscore(path=path,device='cuda:0')
allscore=summarizer.save_MarcoPolo(input_path=path,
                                   output_path=path)
  1. Generating MarcoPolo HTML report
import MarcoPolo.report as report
report.generate_report(input_path="scRNAdata",output_path="report/hESC",top_num_table=1000,top_num_figure=1000)
  • Note
    • User can specify the number of genes to include in the report file by setting the top_num_table and top_num_figure parameters.
    • If there are any two genes with the same MarcoPolo score, a gene with a larger fold change value is prioritized.

The function outputs the two files:

  • report/hESC/index.html (MarcoPolo HTML report)
  • report/hESC/voting.html (For each gene, this file shows the top 10 genes of which on/off information is similar to the gene.)

To-dos

  • supporting AnnData object, which is used by scanpy by default.
  • building colab running environment

Citation

If you use any part of this code or our data, please cite our paper.

@article{kim2022marcopolo,
  title={MarcoPolo: a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering},
  author={Kim, Chanwoo and Lee, Hanbin and Jeong, Juhee and Jung, Keehoon and Han, Buhm},
  journal={Nucleic Acids Research},
  year={2022}
}

Contact

If you have any inquiries, please feel free to contact

  • Chanwoo Kim (Paul G. Allen School of Computer Science & Engineering @ the University of Washington)
Owner
Chanwoo Kim
Ph.D. student in Computer Science at the University of Washington
Chanwoo Kim
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
CVPR 2022 "Online Convolutional Re-parameterization"

OREPA: Online Convolutional Re-parameterization This repo is the PyTorch implementation of our paper to appear in CVPR2022 on "Online Convolutional Re

Mu Hu 121 Dec 21, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022