Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Overview

Invariant Point Attention - Pytorch

Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alphafold2 for coordinate refinement.

  • write up a test for invariance under rotation
  • enforce float32 for certain operations

Install

$ pip install invariant-point-attention

Usage

import torch
from einops import repeat
from invariant_point_attention import InvariantPointAttention

attn = InvariantPointAttention(
    dim = 64,                  # single (and pairwise) representation dimension
    heads = 8,                 # number of attention heads
    scalar_key_dim = 16,       # scalar query-key dimension
    scalar_value_dim = 16,     # scalar value dimension
    point_key_dim = 4,         # point query-key dimension
    point_value_dim = 4        # point value dimension
)

single_repr   = torch.randn(1, 256, 64)      # (batch x seq x dim)
pairwise_repr = torch.randn(1, 256, 256, 64) # (batch x seq x seq x dim)
mask          = torch.ones(1, 256).bool()    # (batch x seq)

rotations     = repeat(torch.eye(3), '... -> b n ...', b = 1, n = 256)  # (batch x seq x rot1 x rot2) - example is identity
translations  = torch.zeros(1, 256, 3) # translation, also identity for example

attn_out = attn(
    single_repr,
    pairwise_repr,
    rotations = rotations,
    translations = translations,
    mask = mask
)

attn_out.shape # (1, 256, 64)

You can also use this module without the pairwise representations, which is very specific to the Alphafold2 architecture.

import torch
from einops import repeat
from invariant_point_attention import InvariantPointAttention

attn = InvariantPointAttention(
    dim = 64,
    heads = 8,
    require_pairwise_repr = False   # set this to False to use the module without pairwise representations
)

seq           = torch.randn(1, 256, 64)
mask          = torch.ones(1, 256).bool()

rotations     = repeat(torch.eye(3), '... -> b n ...', b = 1, n = 256)
translations  = torch.randn(1, 256, 3)

attn_out = attn(
    seq,
    rotations = rotations,
    translations = translations,
    mask = mask
)

attn_out.shape # (1, 256, 64)

You can also use one IPA-based transformer block, which is an IPA followed by a feedforward. By default it will use post-layernorm as done in the official code, but you can also try pre-layernorm by setting post_norm = False

import torch
from torch import nn
from einops import repeat
from invariant_point_attention import IPABlock

block = IPABlock(
    dim = 64,
    heads = 8,
    scalar_key_dim = 16,
    scalar_value_dim = 16,
    point_key_dim = 4,
    point_value_dim = 4
)

seq           = torch.randn(1, 256, 64)
pairwise_repr = torch.randn(1, 256, 256, 64)
mask          = torch.ones(1, 256).bool()

rotations     = repeat(torch.eye(3), 'r1 r2 -> b n r1 r2', b = 1, n = 256)
translations  = torch.randn(1, 256, 3)

block_out = block(
    seq,
    pairwise_repr = pairwise_repr,
    rotations = rotations,
    translations = translations,
    mask = mask
)

updates = nn.Linear(64, 6)(block_out)
quaternion_update, translation_update = updates.chunk(2, dim = -1) # (1, 256, 3), (1, 256, 3)

# apply updates to rotations and translations for the next iteration

Citations

@Article{AlphaFold2021,
    author  = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
    journal = {Nature},
    title   = {Highly accurate protein structure prediction with {AlphaFold}},
    year    = {2021},
    doi     = {10.1038/s41586-021-03819-2},
    note    = {(Accelerated article preview)},
}
Comments
  • Computing point dist - use cartesian dimension instead of hidden dimension

    Computing point dist - use cartesian dimension instead of hidden dimension

    https://github.com/lucidrains/invariant-point-attention/blob/2f1fb7ca003d9c94d4144d1f281f8cbc914c01c2/invariant_point_attention/invariant_point_attention.py#L130

    I think it should be dim=-1, thus using the cartesian (xyz) axis, rather than dim=-2, which uses the hidden dimension.

    opened by aced125 3
  • In-place rotation detach not allowed

    In-place rotation detach not allowed

    Hi, this is probably highly version-dependent (I have pytorch=1.11.0, pytorch3d=0.7.0 nightly), but I thought I'd report it. Torch doesn't like the in-place detach of the rotation tensor. Full stack trace (from denoise.py):

    Traceback (most recent call last):
      File "denoise.py", line 56, in <module>
        denoised_coords = net(
      File "/home/pi-user/miniconda3/envs/piai/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1110, in _call_impl
        return forward_call(*input, **kwargs)
      File "/home/pi-user/invariant-point-attention/invariant_point_attention/invariant_point_attention.py", line 336, in forward
        rotations.detach_()
    RuntimeError: Can't detach views in-place. Use detach() instead. If you are using DistributedDataParallel (DDP) for training, and gradient_as_bucket_view is set as True, gradients are views of DDP buckets, and hence detach_() cannot be called on these gradients. To fix this error, please refer to the Optimizer.zero_grad() function in torch/optim/optimizer.py as the solution.
    

    Switching to rotations = rotations.detach() seems to behave correctly (tested in denoise.py and my own code). I'm not totally sure if this allocates a separate tensor, or just creates a new node pointing to the same data.

    opened by sidnarayanan 1
  • Report a bug that causes instability in training

    Report a bug that causes instability in training

    Hi, I would like to report a bug in the rotation, that causes instability in training. https://github.com/lucidrains/invariant-point-attention/blob/de337568959eb7611ba56eace2f642ca41e26216/invariant_point_attention/invariant_point_attention.py#L322

    The IPA Transformer is similar to the structure module in AF2, where the recycling is used. Note that we usually detach the gradient of rotation, which may causes instability during training. The reason is that the gradient of rotation would update the rotation during back propagation, which results in the instability based on experiments. Therefore we usually detach the rotation to dispel the updating effect of gradient descent. I have seen you do this in your alphafold2 repo (https://github.com/lucidrains/alphafold2).

    If you think this is a problem, please let me know. I am happy to submit a pr to fix that.

    Best, Zhangzhi Peng

    opened by pengzhangzhi 1
  • Subtle mistake in the implementation

    Subtle mistake in the implementation

    Hi. Thanks for your implementation. It is very helpful. However, I find that you miss the dropout in the IPAModule.

    https://github.com/lucidrains/invariant-point-attention/blob/de337568959eb7611ba56eace2f642ca41e26216/invariant_point_attention/invariant_point_attention.py#L239

    In the alphafold2 supplementary, the dropout is nested in the layer norm, which also holds true in the layer norm at transition layer (line 9 in the figure below). image

    If you think this is a problem, please let me know. I will submit a pr to fix it. Thanks again for sharing such an amazing repo.

    Best, Zhangzhi Peng

    opened by pengzhangzhi 1
  • change quaternions update as original alphafold2

    change quaternions update as original alphafold2

    In the original alphafold2 IPA module, pure-quaternion (without real part) description is used for quaternion update. This can be broken down to the residual-update-like formulation. But in this code you use (1, a, b, c) style quaternion so I believe the quaternion update should be done as a simple multiply update. As far as I have tested, the loss seems to go down more efficiently with the modification.

    opened by ShintaroMinami 1
  • #126 maybe omit the 'self.point_attn_logits_scale'?

    #126 maybe omit the 'self.point_attn_logits_scale'?

    Hi luci:

    I read the original paper and compare it to your implement, found one place might be some mistake:

    #126. attn_logits_points = -0.5 * (point_dist * point_weights).sum(dim = -1),

    I thought it should be attn_logits_points = -0.5 * (point_dist * point_weights * self.point_attn_logits_scale).sum(dim = -1)

    Thanks for your sharing!

    opened by CiaoHe 1
  • Application of Invariant point attention : preserver part of structure.

    Application of Invariant point attention : preserver part of structure.

    Hi, lucidrian. First of all really thanks for your work!

    I have a question, how can I change(denoise) the structure only in the region I want, how do I do it? (denoise.py)

    opened by hw-protein 0
  • Equivariance test for IPA Transformer

    Equivariance test for IPA Transformer

    @lucidrains I would like to ask about the equivariance of the transformer (not IPA blocks). I wonder if you checked for the equivariance of the output when you allow the transformation of local points to global points using the updated quaternions and translations. I am not sure why this test fails in my case.

    opened by amrhamedp 1
Owner
Phil Wang
Working with Attention
Phil Wang
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
Face and Body Tracking for VRM 3D models on the web.

Kalidoface 3D - Face and Full-Body tracking for Vtubing on the web! A sequal to Kalidoface which supports Live2D avatars, Kalidoface 3D is a web app t

Rich 257 Jan 02, 2023
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022