SwinTrack: A Simple and Strong Baseline for Transformer Tracking

Overview

SwinTrack

This is the official repo for SwinTrack.

banner

A Simple and Strong Baseline

performance

Prerequisites

Environment

conda (recommended)

conda create -y -n SwinTrack
conda activate SwinTrack
conda install -y anaconda
conda install -y pytorch torchvision cudatoolkit -c pytorch
conda install -y -c fvcore -c iopath -c conda-forge fvcore
pip install wandb
pip install timm

pip

pip install -r requirements.txt

Dataset

Download

Unzip

The paths should be organized as following:

lasot
├── airplane
├── basketball
...
├── training_set.txt
└── testing_set.txt

lasot_extension
├── atv
├── badminton
...
└── wingsuit

got-10k
├── train
│   ├── GOT-10k_Train_000001
│   ...
├── val
│   ├── GOT-10k_Val_000001
│   ...
└── test
    ├── GOT-10k_Test_000001
    ...
    
trackingnet
├── TEST
├── TRAIN_0
...
└── TRAIN_11

coco2017
├── annotations
│   ├── instances_train2017.json
│   └── instances_val2017.json
└── images
    ├── train2017
    │   ├── 000000000009.jpg
    │   ├── 000000000025.jpg
    │   ...
    └── val2017
        ├── 000000000139.jpg
        ├── 000000000285.jpg
        ...

Prepare path.yaml

Copy path.template.yaml as path.yaml and fill in the paths.

LaSOT_PATH: '/path/to/lasot'
LaSOT_Extension_PATH: '/path/to/lasot_ext'
GOT10k_PATH: '/path/to/got10k'
TrackingNet_PATH: '/path/to/trackingnet'
COCO_2017_PATH: '/path/to/coco2017'

Prepare dataset metadata cache (optional)

Download the metadata cache from google drive, and unzip it in datasets/cache/

datasets
└── cache
    ├── SingleObjectTrackingDataset_MemoryMapped
    │   └── filtered
    │       ├── got-10k-got10k_vot_train_split-train-3c1ffeb0c530522f0345d088b2f72168.np
    │       ...
    └── DetectionDataset_MemoryMapped
        └── filtered
            └── coco2017-nocrowd-train-bcd5bf68d4b87619ab451fe293098401.np

Login to wandb

Register an account at wandb, then login with command:

wandb login

Training & Evaluation

Train and evaluate on a single GPU

# Tiny
python main.py SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers

# Base
python main.py SwinTrack Base --output_dir /path/to/output -W $num_dataloader_workers

# Base-384
python main.py SwinTrack Base-384 --output_dir /path/to/output -W $num_dataloader_workers

--output_dir is optional, -W defaults to 4.

note: our code performs evaluation automatically when training is done, output is saved in /path/to/output/test_metrics.

Train and evaluate on multiple GPUs using DDP

# Tiny
python main.py SwinTrack Tiny --distributed_nproc_per_node $num_gpus --distributed_do_spawn_workers --output_dir /path/to/output -W $num_dataloader_workers

Train and evaluate on multiple nodes with multiple GPUs using DDP

# Tiny
python main.py SwinTrack Tiny --master_address $master_address --distributed_node_rank $node_rank distributed_nnodes $num_nodes --distributed_nproc_per_node $num_gpus --distributed_do_spawn_workers --output_dir /path/to/output -W $num_dataloader_workers 

Train and evaluate with run.sh helper script

# Train and evaluate on all GPUs
./run.sh SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers
# Train and evaluate on multiple nodes
NODE_RANK=$NODE_INDEX NUM_NODES=$NUM_NODES MASTER_ADDRESS=$MASTER_ADDRESS DATE_WITH_TIME=$DATE_WITH_TIME ./run.sh SwinTrack Tiny --output_dir /path/to/output -W $num_dataloader_workers 

Ablation study

The ablation study can be done by applying a small patch to the main config file.

Take the ResNet 50 backbone as the example, the rest parameters are the same as the above.

# Train and evaluate with resnet50 backbone
python main.py SwinTrack Tiny --mixin_config resnet.yaml
# or with run.sh
./run.sh SwinTrack Tiny --mixin resnet.yaml

All available config patches are listed in config/SwinTrack/Tiny/mixin.

Train and evaluate with GOT-10k dataset

python main.py SwinTrack Tiny --mixin_config got10k.yaml

Submit $output_dir/test_metrics/got10k/submit/*.zip to the GOT-10k evaluation server to get the result of GOT-10k test split.

Evaluate Existing Model

Download the pretrained model from google drive, then type:

python main.py SwinTrack Tiny --weight_path /path/to/weigth_file.pth --mixin_config evaluation.yaml --output_dir /path/to/output

Our code can evaluate the model on multiple GPUs in parallel, so all parameters above are also available.

Tracking results

Touch here google drive

Citation

@misc{lin2021swintrack,
      title={SwinTrack: A Simple and Strong Baseline for Transformer Tracking}, 
      author={Liting Lin and Heng Fan and Yong Xu and Haibin Ling},
      year={2021},
      eprint={2112.00995},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
LitingLin
LitingLin
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
CT Based COVID 19 Diagnose by Image Processing and Deep Learning

This project proposed the deep learning and image processing method to undertake the diagnosis on 2D CT image and 3D CT volume.

1 Feb 08, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Civsim is a basic civilisation simulation and modelling system built in Python 3.8.

Civsim Introduction Civsim is a basic civilisation simulation and modelling system built in Python 3.8. It requires the following packages: perlin_noi

17 Aug 08, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
SAS: Self-Augmentation Strategy for Language Model Pre-training

SAS: Self-Augmentation Strategy for Language Model Pre-training This repository

Alibaba 5 Nov 02, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Pytorch reimplementation of PSM-Net: "Pyramid Stereo Matching Network"

This is a Pytorch Lightning version PSMNet which is based on JiaRenChang/PSMNet. use python main.py to start training. PSM-Net Pytorch reimplementatio

XIAOTIAN LIU 1 Nov 25, 2021