Pytorch implementation of One-Shot Affordance Detection

Related tags

Deep LearningOSAD_Net
Overview

One-shot Affordance Detection

PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, training code and pretrained models.

📋 Table of content

  1. 📎 Paper Link
  2. 💡 Abstract
  3. 📖 Method
    1. IJCAI Version
    2. Extended Version
  4. 📂 Dataset
    1. PAD
    2. PADv2
  5. 📃 Requirements
  6. ✏️ Usage
    1. Train
    2. Test
    3. Evaluation
  7. 📊 Experimental Results
    1. Performance on PADv2
    2. Performance on PAD
  8. 🍎 Potential Applications
  9. ✉️ Statement
  10. 🔍 Citation

📎 Paper Link

  • One-Shot Affordance Detection (IJCAI2021) (link)

Authors: Hongchen Luo, Wei Zhai, Jing Zhang, Yang Cao, Dacheng Tao

  • One-Shot Affordance Detection (Extended Version) (link)

Authors: Wei Zhai*, Hongchen Luo*, Jing Zhang, Yang Cao, Dacheng Tao

💡 Abstract

Affordance detection refers to identifying the potential action possibilities of objects in an image, which is a crucial ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we first consider the challenging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection Network (OSAD-Net) that firstly estimates the human action purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OSAD-Net can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a Purpose-driven Affordance Dataset v2 (PADv2) by collecting and labeling 30k images from 39 affordance and 94 object categories. With complex scenes and rich annotations, our PADv2 can comprehensively understand the affordance of objects and can even be used in other vision tasks, such as scene understanding, action recognition, robot manipulation, etc. We present a standard one-shot affordance detection benchmark comparing 11 advanced models in several different fields. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality.


Illustration of perceiving affordance. Given a support image that depicts the action purpose, all objects in ascene with the common affordance could be detected.

📖 Method

OSAD-Net (IJCAI2021)


Our One-Shot Affordance Detection (OS-AD) network. OSAD-Net_ijcai consists of three key modules: Purpose Learning Module (PLM), Purpose Transfer Module (PTM), and Collaboration Enhancement Module (CEM). (a) PLM aims to estimate action purpose from the human-object interaction in the support image. (b) PTM transfers the action purpose to the query images via an attention mechanism to enhance the relevant features. (c) CEM captures the intrinsic characteristics between objects having the common affordance to learn a better affordance perceiving ability.

OSAD-Net (Extended Version)


The framework of our OSAD-Net. For our OSAD-Net pipeline, the network first uses a Resnet50 to extract the features of support image and query images. Subsequently, the support feature, the bounding box of the person and object, and the pose of the person are fed together into the action purpose learning (APL) module to obtain the human action purpose features. And then send the human action purpose features and query images together to the mixture purpose transfer (MPT) to transfer the human action purpose to query images and activate the object region belonging to the affordance in the query images. Then, the output of the MPT is fed into a densely collaborative enhancement (DCE) module to learn the commonality among objects of the same affordance and suppress the irrelevant background regions using the cooperative strategy, and finally feed into the decoder to obtain the final detection results.

📂 Dataset


The samples images in the PADv2 of this paper. Our PADv2 has rich annotations such as affordance masks as well as depth information. Thus it provides a solid foundation for the affordance detection task.


The properties of PADv2. (a) The classification structure of the PADv2 in this paper consists of 39 affordance categories and 94 object categories. (b) The word cloud distribution of the PADv2. (c) Overlapping masks visualization of PADv2 mixed with specific affordance classes and overall category masks. (d) Confusion matrix of PADv2 affordance category and object category, where the horizontal axis corresponds to the object category and the vertical axis corresponds to the affordance category, (e) Distribution of co-occurring attributes of the PADv2, the grid is numbered for the total number of images.

Download PAD

cd Downloads/
unzip PAD.zip
cd OSAD-Net
mkdir datasets/PAD
mv Downloads/PAD/divide_1 datasets/PAD/   
mv Downloads/PAD/divide_2 datasets/PAD/   
mv Downloads/PAD/divide_3 datasets/PAD/  

Download PADv2

  • You can download the PADv2 from [ Baidu Pan (1ttj) ].
cd Downloads/
unzip PADv2_part1.zip
cd OSAD-Net
mkdir datasets/PADv2_part1
mv Downloads/PADv2_part1/divide_1 datasets/PADv2_part1/  
mv Downloads/PADv2_part1/divide_2 datasets/PADv2_part1/  
mv Downloads/PADv2_part1/divide_3 datasets/PADv2_part1/   

📃 Requirements

  • python 3.7
  • pytorch 1.1.0
  • opencv

✏️ Usage

git clone https://github.com/lhc1224/OSAD_Net.git
cd OSAD-Net

Train

You can download the pretrained model from [ Google Drive | Baidu Pan (xjk5) ], then move it to the models folder To train the OSAD-Net_ijcai model, run run_os_ad.py with the desired model architecture:

python run_os_ad.py   

To train the OSAD-Net model, run run_os_adv2.py with the desired model architecture:

python run_os_adv2.py   

Test

To test the OSAD-Net_ijcai model, run run_os_ad.py:

python run_os_ad.py  --mode test 

To test the OSAD-Net model, run run_os_ad.py, you can download the trained models from [ Google Drive | Baidu Pan (611r) ]

python run_os_adv2.py  --mode test 

Evaluation

In order to evaluate the forecast results, the evaluation code can be obtained via the following Evaluation Tools.

📊 Experimental Results

Performance on PADv2

You can download the affordance maps from [ Google Drive | Baidu Pan (hwtf) ]


Performance on PAD

You can download the affordance maps from [ Google Drive | Baidu Pan(hrlj) ]


🍎 Potential Applications


Potential Applications of one-shot affordance system. (a) Application I: Content Image Retrieval. The content image retrieval model combined with affordance detection has a promising application in search engines and online shopping platforms. (b) Application II: Learning from Demonstration. The one-shot affordance detection model can help an agent to naturally select the correct object based on the expert’s actions. (c) Application III: Self-exploration of Agents. The one-shot affordance detection model helps an agent to autonomously perceive all instances or areas of a scene with the similar affordance property in unknown human spaces based on historical data (e.g., images of human interactions)

✉️ Statement

This project is for research purpose only, please contact us for the licence of commercial use. For any other questions please contact [email protected] or [email protected].

🔍 Citation

@inproceedings{Oneluo,
  title={One-Shot Affordance Detection},
  author={Hongchen Luo and Wei Zhai and Jing Zhang and Yang Cao and Dacheng Tao},
  booktitle={IJCAI},
  year={2021}
}
@article{luo2021one,
  title={One-Shot Affordance Detection in the Wild},
  author={Zhai, Wei and Luo, Hongchen and Zhang, Jing and Cao, Yang and Tao, Dacheng},
  journal={arXiv preprint arXiv:2106.14747xx},
  year={2021}
}
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
StarGAN v2 - Official PyTorch Implementation (CVPR 2020)

StarGAN v2 - Official PyTorch Implementation StarGAN v2: Diverse Image Synthesis for Multiple Domains Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-W

Clova AI Research 3.1k Jan 09, 2023
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
A PyTorch Implementation of Single Shot Scale-invariant Face Detector.

S³FD: Single Shot Scale-invariant Face Detector A PyTorch Implementation of Single Shot Scale-invariant Face Detector. Eval python wider_eval_pytorch.

carwin 235 Jan 07, 2023
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022