meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

Overview

meProp

The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf] by Xu Sun, Xuancheng Ren, Shuming Ma, Houfeng Wang.

Based on meProp, we further simplify the model by eliminating the rows or columns that are seldom updated, which will reduce the computational cost both in the training and decoding, and potentially accelerate decoding in real-world applications. We name this method meSimp (minimal effort simplification). For more details, please see the paper Training Simplification and Model Simplification for Deep Learning: A Minimal Effort Back Propagation Method [pdf]. The codes are at [here].

Introduction

We propose a simple yet effective technique to simplify the training of neural networks. The technique is based on the top-k selection of the gradients in back propagation.

In back propagation, only a small subset of the full gradient is computed to update the model parameters. The gradient vectors are sparsified in such a way that only the top-k elements (in terms of magnitude) are kept. As a result, only k rows or columns (depending on the layout) of the weight matrix are modified, leading to a linear reduction in the computational cost. We name this method meProp (minimal effort back propagation).

Surprisingly, experimental results demonstrate that most of time we only need to update fewer than 5% of the weights at each back propagation pass. More interestingly, the proposed method improves the accuracy of the resulting models rather than degrades the accuracy, and a detailed analysis is given.

The following figure is an illustration of the idea of meProp.

An illustration of the idea of meProp.

TL;DR: Training with meProp is significantly faster than the original back propagation, and has better accuracy on all of the three tasks we used, Dependency Parsing, POS Tagging and MNIST respectively. The method works with different neural models (MLP and LSTM), with different optimizers (we tested AdaGrad and Adam), with DropOut, and with more hidden layers. The top-k selection works better than the random k-selection, and better than normally-trained k-dimensional network.

Update: Results on test set (please refer to the paper for detailed results and experimental settings):

Method (Adam, CPU) Backprop Time (s) Test (%)
Parsing (MLP 500d) 9,078 89.80
Parsing (meProp top-20) 489 (18.6x) 88.94 (+0.04)
POS-Tag (LSTM 500d) 16,167 97.22
POS-Tag (meProp top-10) 436 (37.1x) 97.25 (+0.03)
MNIST (MLP 500d) 170 98.20
MNIST (meProp top-80) 29 (5.9x) 98.27 (+0.07)

The effect of k, selection (top-k vs. random), and network dimension (top-k vs. k-dimensional):

Effect of k

To achieve speedups on GPUs, a slight change is made to unify the top-k pattern across the mini-batch. The original meProp will cause different top-k patterns across examples of a mini-batch, which will require sparse matrix multiplication. However, sparse matrix multiplication is not very efficient on GPUs compared to dense matrix multiplication on GPUs. Hence, by unifying the top-k pattern, we can extract the parts of the matrices that need computation (dense matrices), get the results, and reconstruct them to the appropriate size for further computation. This leads to actual speedups on GPUs, although we believe if a better method is designed, the speedups on GPUs can be better.

See [pdf] for more details, experimental results, and analysis.

Usage

PyTorch

Requirements

  • Python 3.5
  • PyTorch v0.1.12+ - v0.3.1
  • torchvision
  • CUDA 8.0

Dataset

MNIST: The code will automatically download the dataset and process the dataset (using torchvision). See function get_mnist in the pytorch code for more information.

Run

python3.5 main.py

The code runs unified meProp by default. You could change the lines at the bottom of the main.py to run meProp using sparse matrix multiplication. Or you could pass the arguments through command line.

usage: main.py [-h] [--n_epoch N_EPOCH] [--d_hidden D_HIDDEN]
               [--n_layer N_LAYER] [--d_minibatch D_MINIBATCH]
               [--dropout DROPOUT] [--k K] [--unified] [--no-unified]
               [--random_seed RANDOM_SEED]

optional arguments:
  -h, --help            show this help message and exit
  --n_epoch N_EPOCH     number of training epochs
  --d_hidden D_HIDDEN   dimension of hidden layers
  --n_layer N_LAYER     number of layers, including the output layer
  --d_minibatch D_MINIBATCH
                        size of minibatches
  --dropout DROPOUT     dropout rate
  --k K                 k in meProp (if invalid, e.g. 0, do not use meProp)
  --unified             use unified meProp
  --no-unified          do not use unified meProp
  --random_seed RANDOM_SEED
                        random seed

The results will be written to stdout by default, but you could change the argument file when initializing the TestGroup to write the results to a file.

The code supports simple unified meProp in addition. Please notice, this code will use GPU 0 by default.

C#

Requirements

  • Targeting Microsoft .NET Framework 4.6.1+
  • Compatible versions of Mono should work fine (tested Mono 5.0.1)
  • Developed with Microsoft Visual Studio 2017

Dataset

MNIST: Download from link. Extract the files, and place them at the same location with the executable.

Run

Compile the code first, or use the executable provided in releases.

Then

nnmnist.exe <config.json>

or

mono nnmnist.exe <config.json>

where <config.json> is a configuration file. There is an example configuration file in the source codes. The example configuration file runs the baseline model. Change the NetType to mlptop for experimenting with meProp, and to mlpvar for experimenting with meSimp. The output will be written to a file at the same location with the executable.

The code supports random k selection in addition.

Citation

bibtex:

@InProceedings{sun17meprop,
  title = 	 {me{P}rop: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting},
  author = 	 {Xu Sun and Xuancheng Ren and Shuming Ma and Houfeng Wang},
  booktitle = 	 {Proceedings of the 34th International Conference on Machine Learning},
  pages = 	 {3299--3308},
  year = 	 {2017},
  volume = 	 {70},
  series = 	 {Proceedings of Machine Learning Research},
  address = 	 {International Convention Centre, Sydney, Australia}
}
You might also like...
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Code for the ICML 2021 paper
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

 Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Comments
  • Regarding the demonstration for faster acceleration results in pytorch

    Regarding the demonstration for faster acceleration results in pytorch

    Hi lancopku,

    I'm currently implementing your meProp code to understand the flow of the architecture in detail.

    However, I couln't see the improved acceleration speed of meprop compared to that of conventional MLP.

    In the table 7 and 8 of paper Sun et al., 2017, pytorch based GPU computation can achieve more faster back-propagation procedure.

    Could you please let me know how to implement meprop to show faster backprop computation?

    Best, Seul-Ki

    opened by seulkiyeom 3
  • Deeper MLP?

    Deeper MLP?

    Have you tried on deeper models?

    Since each step of backprops, gradients are removed with specific portions(like 5%), Will not the gradient vanish in a deeper neural network model?

    Any thoughts?

    opened by ildoonet 1
  • Error RuntimeError: 2D tensors expected, got 1D

    Error RuntimeError: 2D tensors expected, got 1D

    I am trying to integrate meProp into my work, but getting such error. Do you have any idea about this?

        return linearUnified(self.k)(x, self.w, self.b)
     line 39, in forward
        y.addmm_(0, 1, x, w)
    RuntimeError: 2D tensors expected, got 1D, 2D tensors at /pytorch/aten/src/THC/generic/THCTensorMathBlas.cu:258
    
    opened by kayuksel 1
Releases(v0.2.0)
Owner
LancoPKU
Language Computing and Machine Learning Group (Xu Sun's group) at Peking University
LancoPKU
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 04, 2023
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
Histocartography is a framework bringing together AI and Digital Pathology

Documentation | Paper Welcome to the histocartography repository! histocartography is a python-based library designed to facilitate the development of

155 Nov 23, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
A library for using chemistry in your applications

Chemistry in python Resources Used The following items are not made by me! Click the words to go to the original source Periodic Tab Json - Used in -

Tech Penguin 28 Dec 17, 2021
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a t

Muhammad Fathy Rashad 643 Dec 30, 2022