Line-level Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Related tags

Deep LearningLineHTR
Overview

Line-level Handwritten Text Recognition with TensorFlow

poster

This model is an extended version of the Simple HTR system implemented by @Harald Scheidl and can handle a full line of text image. Huge thanks to @Harald Scheidl for his great works.

How to run

Go to the src/ directory and run python main.py with these following arguments

Command line arguments

  • --train: train the NN, details see below.
  • --validate: validate the NN, details see below.
  • --beamsearch: use vanilla beam search decoding (better, but slower) instead of best path decoding.
  • --wordbeamsearch: use word beam search decoding (only outputs words contained in a dictionary) instead of best path decoding. This is a custom TF operation and must be compiled from source, more information see corresponding section below. It should not be used when training the NN.

I don't include any pretrained model in this branch so you will need to train the model on your data first

Train model

I created this model for the Cinnamon AI Marathon 2018 competition, they released a small dataset but it's in Vietnamese, so you guys may want to try some other dataset like [4]IAM for English.

As long as your dataset contain a labels.json file like this:

{
    "img1.jpg": "abc xyz",
    ...
    "imgn.jpg": "def ghi"
}

With eachkey is the path to the images file and each value is the ground truth label for that image, this code will works fine.

Learning is visualized by Tensorboard, I tracked the character error rate, word error rate and sentences accuracy for this model. All logs will be saved in ./logs/ folder. You can start a Tensorboard session to see the logs with this command tensorboard --logdir='./logs/'

It's took me about 48 hours with about 13k images on a single GTX 1060 6GB to get down to 0.16 CER on the private testset of the competition.

Information about model

Overview

The model is a extended version of the Simple HTR system @Harald Scheidl implemented It consists of 7 CNN layers, 2 RNN (Bi-LSTM) layers and the CTC loss and decoding layer and can handle a full line of text image

  • The input image is a gray-value image and has a size of 800x64
  • 7 CNN layers map the input image to a feature sequence of size 100x512
  • 2 LSTM layers with 512 units propagate information through the sequence and map the sequence to a matrix of size 100x205. Each matrix-element represents a score for one of the 205 characters at one of the 100 time-steps
  • The CTC layer either calculates the loss value given the matrix and the ground-truth text (when training), or it decodes the matrix to the final text with best path decoding or beam search decoding (when inferring)
  • Batch size is set to 50

Highest accuracy achieved is 0.84 on the private testset of the Cinnamon AI Marathon 2018 competition (measure by Charater Error Rate - CER).

Improve accuracy

If you need a better accuracy, here are some ideas how to improve it [2]:

  • Data augmentation: increase dataset-size by applying further (random) transformations to the input images. At the moment, only random distortions are performed.
  • Remove cursive writing style in the input images (see DeslantImg).
  • Increase input size.
  • Add more CNN layers or use transfer learning on CNN.
  • Replace Bi-LSTM by 2D-LSTM.
  • Replace optimizer: Adam improves the accuracy, however, the number of training epochs increases (see discussion).
  • Decoder: use token passing or word beam search decoding [3] (see CTCWordBeamSearch) to constrain the output to dictionary words.
  • Text correction: if the recognized word is not contained in a dictionary, search for the most similar one.

Btw, don't hesitate to ask me anything via a Github Issue (See the issue template file for more details)

BTW, big shout out to Sushant Gautam for extended this code for IAM dataset, he even provide pretrained model and web UI for inferences the model. Don't forget to check his repo out.

References

[1] Build a Handwritten Text Recognition System using TensorFlow

[2] Scheidl - Handwritten Text Recognition in Historical Documents

[3] Scheidl - Word Beam Search: A Connectionist Temporal Classification Decoding Algorithm

[4] Marti - The IAM-database: an English sentence database for offline handwriting recognition

Owner
Hoàng Tùng Lâm (Linus)
AI Researcher/Engineer at Techainer
Hoàng Tùng Lâm (Linus)
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Attention-driven Robot Manipulation (ARM) which includes Q-attention

Attention-driven Robotic Manipulation (ARM) This codebase is home to: Q-attention: Enabling Efficient Learning for Vision-based Robotic Manipulation I

Stephen James 84 Dec 29, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023