A Powerful Serverless Analysis Toolkit That Takes Trial And Error Out of Machine Learning Projects

Overview


KXY: A Seemless API to 10x The Productivity of Machine Learning Engineers

License PyPI Latest Release Downloads

Documentation

https://www.kxy.ai/reference/

Installation

From PyPi:

pip install kxy

From GitHub:

git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .

Authentication

All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run

kxy configure

and follow the instructions. To get an API key you need an account; you can sign up for a free trial here. You'll then be automatically given an API key which you can find here.

KXY is free for academic use.

Docker

The Docker image kxytechnologies/kxy has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.

To start a Jupyter Notebook server from a sandboxed Docker environment, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with your API key and navigate to http://localhost:5555 in your browser. This docker environment comes with all examples available on the documentation website.

To start a Jupyter Notebook server from an existing directory of notebooks, run

&& /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''" ">
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure 
   
     && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''
    "
   

where you should replace with the path to your local notebook folder and navigate to http://localhost:5555 in your browser.

Other Programming Language

We plan to release friendly API client in more programming language.

In the meantime, you can directly issue requests to our RESTFul API using your favorite programming language.

You might also like...
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A library of extension and helper modules for Python's data analysis and machine learning libraries.
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Comments
  • error in import kxy

    error in import kxy

    Hi, After installing the kxy package and configuring the API key, the import kxy shows the error below:

    .../python3.9/site-packages/kxy/pfs/pfs_selector.py in <module>
          6 import numpy as np
          7 
    ----> 8 import tensorflow as tf
          9 from tensorflow.keras.callbacks import EarlyStopping, TerminateOnNaN
         10 from tensorflow.keras.optimizers import Adam
    
    ModuleNotFoundError: No module named 'tensorflow'
    
    

    what version of tensorflow is needed for kxy to work?

    opened by zeydabadi 2
  • generate_features Documentation?

    generate_features Documentation?

    Is there any documentation on how to use the generate_features function? It doesn't appear in the documentation and I can't find it in the github. e.g. how to use the entity column, how to format time-series data in advance for it, etc'. Thanks!

    opened by ddofer 1
  • error kxy.data_valuation

    error kxy.data_valuation

    Hi, After running chievable_performance_df = X_train_reduced.kxy.data_valuation(target_column='state', problem_type='classification', include_mutual_information=True, anonymize=True) I get the following error and the function does not return anything: `During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "/usr/lib/python3.9/asyncio/tasks.py", line 258, in __step result = coro.throw(exc) File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1104, in wrapper raise WebSocketClosedError() tornado.websocket.WebSocketClosedError Task exception was never retrieved future: <Task finished name='Task-46004' coro=<WebSocketProtocol13.write_message..wrapper() done, defined at /home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py:1100> exception=WebSocketClosedError()> Traceback (most recent call last): File "/home/lucy/Downloads/general/lib/python3.9/site-packages/tornado/websocket.py", line 1102, in wrapper await fut File "/usr/lib/python3.9/asyncio/tasks.py", line 328, in __wakeup future.result() tornado.iostream.StreamClosedError: Stream is closed `

    opened by zeydabadi 0
Releases(v1.4.10)
  • v1.4.10(Apr 25, 2022)

    Change Log

    v.1.4.10 Changes

    • Added a function to construct features derived from PFS mutual information estimation that should be expected to be linearly related to the target.
    • Fixed a global name conflict in kxy.learning.base_learners.

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.9(Apr 12, 2022)

    Change Log

    v.1.4.9 Changes

    • Change the activation function used by PFS from ReLU to switch/SILU.
    • Leaving it to the user to set the logging level.

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.8(Apr 11, 2022)

    Change Log

    v.1.4.8 Changes

    • Froze the versions of all python packages in the docker file.

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.7(Apr 10, 2022)

    Change Log

    v.1.4.7 Changes

    Changes related to optimizing Principal Feature Selection.

    • Made it easy to change PFS' default learning parameters.
    • Changed PFS' default learning parameters (learning rate is now 0.005 and epsilon 1e-04)
    • Adding a seed parameter to PFS' fit for reproducibility.

    To globally change the learning rate to 0.003, change Adam's epsilon to 1e-5, and the number of epochs to 25, do

    from kxy.misc.tf import set_default_parameter
    set_default_parameter('lr', 0.003)
    set_default_parameter('epsilon', 1e-5)
    set_default_parameter('epochs', 25)
    

    To change the number epochs for a single iteration of PFS, use the epochs argument of the fit method of your PFS object. The fit method now also has a seed parameter you may use to make the PFS implementation deterministic.

    Example:

    from kxy.pfs import PFS
    selector = PFS()
    selector.fit(x, y, epochs=25, seed=123)
    

    Alternatively, you may also use the kxy.misc.tf.set_seed method to make PFS deterministic.

    v.1.4.6 Changes

    Minor PFS improvements.

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.6(Apr 10, 2022)

    Changes

    • Adding more (robust) mutual information loss functions.
    • Exposing the learned total mutual information between principal features and target as an attribute of PFS.
    • Exposing the number of epochs as a parameter of PFS' fit.
    Source code(tar.gz)
    Source code(zip)
  • v1.4.5(Apr 9, 2022)

  • v1.4.4(Apr 8, 2022)

  • v0.3.2(Aug 14, 2020)

  • v0.3.0(Aug 3, 2020)

    Adding a maximum-entropy based classifier (kxy.MaxEntClassifier) and regressor (kxy.MaxEntRegressor) following the scikit-learn signature for fitting and predicting.

    These models estimate the posterior mean E[u_y|x] and the posterior standard deviation sqrt(Var[u_y|x]) for any specific value of x, where the copula-uniform representations (u_y, u_x) follow the maximum-entropy distribution.

    Predictions in the primal are derived from E[u_y|x].

    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Jun 25, 2020)

    • Regression analyses now fully support categorical variables.
    • Foundations for multi-output regressions are laid.
    • Categorical variables are now systematically encoded and treated as continuous, consistent with what's done at the learning stage.
    • Regression and classification are further normalized, and most the compute for classification problems now takes place on the API side, and should be considerably faster.
    Source code(tar.gz)
    Source code(zip)
  • v0.0.18(May 26, 2020)

  • v0.0.16(May 18, 2020)

  • v0.0.15(May 18, 2020)

  • v0.0.14(May 18, 2020)

  • v0.0.13(May 16, 2020)

  • v0.0.11(May 13, 2020)

  • v0.0.10(May 11, 2020)

Owner
KXY Technologies, Inc.
KXY Technologies, Inc.
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Simple Machine Learning Tool Kit

Getting started smltk (Simple Machine Learning Tool Kit) package is implemented for helping your work during data preparation testing your model The g

Alessandra Bilardi 1 Dec 30, 2021
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
SPCL 48 Dec 12, 2022
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just

wenqi 2 Jun 26, 2022
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022