Multi-Scale Progressive Fusion Network for Single Image Deraining

Related tags

Deep LearningMSPFN
Overview

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN)

This is an implementation of the MSPFN model proposed in the paper (Multi-Scale Progressive Fusion Network for Single Image Deraining) with TensorFlow.

Requirements

  • Python 3
  • TensorFlow 1.12.0
  • OpenCV
  • tqdm
  • glob
  • sys

Motivation

The repetitive samples of rain streaks in a rain image as well as its multi-scale versions (multi-scale pyramid images) may carry complementary information (e.g., similar appearance) to characterize target rain streaks. We explore the multi-scale representation from input image scales and deep neural network representations in a unified framework, and propose a multi-scale progressive fusion network (MSPFN) to exploit the correlated information of rain streaks across scales for single image deraining.

Usage

I. Train the MSPFN model

Dataset Organization Form

If you prepare your own dataset, please follow the following form: |--train_data

|--rainysamples  
    |--file1
            :  
    |--file2
        :
    |--filen
    
|--clean samples
    |--file1
            :  
    |--file2
        :
    |--filen

Then you can produce the corresponding '.npy' in the '/train_data/npy' file.

$ python preprocessing.py

Training

Download training dataset ((raw images)Baidu Cloud, (Password:4qnh) (.npy)Baidu Cloud, (Password:gd2s)), or prepare your own dataset like above form.

Run the following commands:

cd ./model
python train_MSPFN.py 

II. Test the MSPFN model

Quick Test With the Raw Model (TEST_MSPFN_M17N1.PY)

Download the pretrained models (Baidu Cloud, (Password:u5v6)) (Google Drive).

Download the commonly used testing rain dataset (R100H, R100L, TEST100, TEST1200, TEST2800) (Google Drive), and the test samples and the labels of joint tasks form (BDD350, COCO350, BDD150) (Baidu Cloud, (Password:0e7o)). In addition, the test results of other competing models can be downloaded from here (TEST1200, TEST100, R100H, R100L).

Run the following commands:

cd ./model/test
python test_MSPFN.py

The deraining results will be in './test/test_data/MSPFN'. We only provide the baseline for comparison. There exists the gap (0.1-0.2db) between the provided model and the reported values in the paper, which originates in the subsequent fine-tuning of hyperparameters, training processes and constraints.

Test the Retraining Model With Your Own Dataset (TEST_MSPFN.PY)

Download the pre-trained models.

Put your dataset in './test/test_data/'.

Run the following commands:

cd ./model/test
python test_MSPFN.py

The deraining results will be in './test/test_data/MSPFN'.

Citation

@InProceedings{Kui_2020_CVPR,
	author = {Jiang, Kui and Wang, Zhongyuan and Yi, Peng and Chen, Chen and Huang, Baojin and Luo, Yimin and Ma, Jiayi and Jiang, Junjun},
	title = {Multi-Scale Progressive Fusion Network for Single Image Deraining},
	booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
	month = {June},
	year = {2020}
}
@ARTICLE{9294056,
  author={K. {Jiang} and Z. {Wang} and P. {Yi} and C. {Chen} and Z. {Han} and T. {Lu} and B. {Huang} and J. {Jiang}},
  journal={IEEE Transactions on Circuits and Systems for Video Technology}, 
  title={Decomposition Makes Better Rain Removal: An Improved Attention-guided Deraining Network}, 
  year={2020},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TCSVT.2020.3044887}}
Owner
Kuijiang
I am a PhD, and currently work at the National Engineering Research Center for Multimedia Software, School of Computer Science, Wuhan University.
Kuijiang
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
Train emoji embeddings based on emoji descriptions.

emoji2vec This is my attempt to train, visualize and evaluate emoji embeddings as presented by Ben Eisner, Tim Rocktäschel, Isabelle Augenstein, Matko

Miruna Pislar 17 Sep 03, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022