Joint Gaussian Graphical Model Estimation: A Survey

Overview

Joint Gaussian Graphical Model Estimation: A Survey

Test Models

  1. Fused graphical lasso [1]
  2. Group graphical lasso [1]
  3. Graphical lasso [1]
  4. Doubly joint spike-and-slab graphical lasso [2]

Installation

  1. Anaconda Environment package:
conda env create -f environment.yml
conda activate r_env2  #activate environment
  1. Install R packages
Rscript install_packages.R

Run Examples

Jupyter notebook

Saveral examples of data generation processes as well as sample codes are in the folder ./examples/jupyter_notebook

Plot ROC curve

Sample code for data generation process 1 (DGP1). The instruction for running DGP2_roc.r is the same.

cd examples/roc
### Generate simulated data, the result will be stored in ./data 
Rscript DGP1_roc.r DG [DATA DIMENSION]

### Select one of the refularization method FGL/GGL/GL. The result will be stored in ./results
Rscript DGP1_roc.r [ACTION: FGL/DGL/GL] [DATA DIMENSION]

###visualization
Rscript DGP1_roc_visualization.r
Other examples

Please check the structure tree below for more details.

Structure

├── examples
│   ├── jupyter_notebook
|   |   ├── simple_example_block.ipynb
|   |   ├── simple_example_scalefree.ipynb
|   |   ├── simple_example_ssjgl.ipynb
│   │   └── simple_example.ipynb
│   │
│   ├── roc # run & visualize ROC curve
|   |   ├── DGP1_roc_visualization.r #visualization|   ├── DGP1_roc.r # roc curve on scalefree network, common structures share same inverse convarince matrix (data generation process 1)
|   |   |                
|   |   ├── DGP2_roc_visualization.r #visualization
|   |   ├── DGP2_roc.r # roc curve on scalefree network, common structures have different inverse convarince matrices (data generation process 2)
|   |   |                    
|   |   ├── simple_roc_vis.r # visualization
|   |   └── simple_roc.r # roc curve on ramdom network
|   | 
|   ├── joint_demo.r # beautiful result on random network (Erdos-Renyi graph)            
│   ├── loss_graphsize_npAIC.r #fix p, vary n            
│   ├── loss_smallgraphsize.r #fix n, vary n             
│   ├── oos_scalefree.r # out-of-sample likelihood on scalefree network.              
│   ├── oos.r # out-of-sample likelihood on random network      
|   ├── scalefree_AIC.r # model selection on scalefree network using AIC, tune the trucation value                
|   ├── scalefree_BIC.r # model selection on scalefree network using BIC, tune the trucation value               
|   ├── simple_example_ar.r # example on AR network: model selction, fnr,fpr, Frobenious loss, etropy loss                      
|   └── simple_example_scalefree.r # example on scalefree network: model selction, fnr,fpr, Frobenious loss, etropy loss
|                          
├── R #source file
|   ├── admm.iters.R
|   ├── display.R
|   ├── eval.R
|   ├── gen_data.R
|   ├── gete.R
|   ├── JGL.R
|   ├── metrics.R
|   └── SSJGL.R
|   
├── environment.yml
├── install_packages.R
├── README.md
└── .gitignore

References

[1] Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society. Series B, Statistical methodology, 76(2), 373.

[2] Zehang Richard Li, Tyler H. McCormick, and Samuel J. Clark. "Bayesian joint spike-and-slab graphical lasso". International Conference on Machine Learning, 2019.

Owner
Koyejo Lab
Koyejo Lab @ UIUC
Koyejo Lab
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
An implementation of the AdaOPS (Adaptive Online Packing-based Search), which is an online POMDP Solver used to solve problems defined with the POMDPs.jl generative interface.

AdaOPS An implementation of the AdaOPS (Adaptive Online Packing-guided Search), which is an online POMDP Solver used to solve problems defined with th

9 Oct 05, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip)

Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds (Local-Lip) Introduction TL;DR: We propose an efficient and trainabl

17 Dec 01, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022