Improving Representations via Similarities

Related tags

Miscellaneousembetter
Overview

embetter

warning

I like to build in public, but please don't expect anything yet. This is alpha stuff!

notes

Improving Representations via Similarities

The object to implement:

Embetter(multi_output=True, epochs=50, sampling_kwargs)
  .fit(X, y)
  .fit_sim(X1, X2, y_sim, weights)
  .partial_fit(X, y, classes, weights)
  .partial_fit_sim(X1, X2, y_sim, weights)
  .predict(X)
  .predict_proba(X)
  .predict_sim(X1, X2)
  .transform(X)
  .translate_X_y(X, y, classes=none)

Observation: especially when multi_output=True there's an opportunity with regards to NaN y-values. We can simply choose with values to translate and which to ignore.

Comments
  • [WIP] Feature/progress bar

    [WIP] Feature/progress bar

    Fixes issue #20

    • [x] Adds progress bar to all text and image embedders.
    • [x] Tests for SentenceEncoder.
    • [ ] Use perfplot for progress bar?
    • [ ] Can we ensure fast NumPy vectorization while using a progress bar?
    opened by CarloLepelaars 5
  • [BUG] `device` should be attribute on `SentenceEncoder`

    [BUG] `device` should be attribute on `SentenceEncoder`

    The device argument in SentenceEncoder is not defined as an attribute. This leads to bugs when using it with sklearn. I encountered attribute errors when trying to print out a Pipeline representation that has SentenceEncoder as a component.

    Should be easy to fix by just adding self.device in SentenceEncoder.__init__. We can consider adding tests for text encoders so we can catch these errors beforehand.

    The scikit-learn development docs make it clear every argument should be defined as an attribute:

    every keyword argument accepted by init should correspond to an attribute on the instance. Scikit-learn relies on this to find the relevant attributes to set on an estimator when doing model selection.

    Error message: AttributeError: 'SentenceEncoder' object has no attribute 'device'.

    Reproduction: Python 3.8 with embetter = "^0.2.2"

    se = SentenceEncoder()
    repr(se)
    

    Fix:

    Add self.device on SentenceEncoder

    class SentenceEncoder(EmbetterBase):
        .
        .
        def __init__(self, name="all-MiniLM-L6-v2", device=None):
            if not device:
                device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            self.device = device
            self.name = name
            self.tfm = SBERT(name, device=self.device)
    
    opened by CarloLepelaars 4
  • Color Histograms - Additional Tricks

    Color Histograms - Additional Tricks

    This approach could work pretty well as an implementation: https://danielmuellerkomorowska.com/2020/06/17/analyzing-image-histograms-with-scikit-image/

    To do something similar to what is explained here: https://www.pinecone.io/learn/color-histograms/

    opened by koaning 4
  • Support for word embeddings

    Support for word embeddings

    Hi,

    Do you think it would be a good idea to add support for static word embeddings (word2vec, glove, etc.)? The embedder would need:

    • A filename to a local embedding file (e.g., glove.6b.100d.txt)
    • Either a callable tokenizer or regex string (i.e., the way sci-kit learn's TfIdfVectorizer splits words).
    • A (name of a) pooling function (e.g., "mean", "max", "sum").

    The second and third parameters could easily have sensible defaults, of course. If you think it's a good idea, I can do the PR somewhere next week.

    Stรฉphan

    opened by stephantul 3
  • [FEATURE] SpaCyEmbedder

    [FEATURE] SpaCyEmbedder

    I think it would be a nice addition to add an embedder that can easily vectorize text through SpaCy. I already have an implementation class for this and would be happy to contribute it here.

    SpaCy Docs on vector: https://spacy.io/api/doc#vector

    Example code for single string:

    import spacy
    nlp = spacy.load("en_core_web_sm")
    doc = nlp("This here text")
    doc.vector
    
    opened by CarloLepelaars 2
  • `get_feature_names_out` for encoders

    `get_feature_names_out` for encoders

    I would be happy to implement get_feature_names_out for all the Embetter objects. I will implement them by just adding a new method (without a Mixin).

    opened by CarloLepelaars 1
  • Remove the classification layer in timm models

    Remove the classification layer in timm models

    I was playing a bit with the library and found out that the TimmEncoder returns 1000-dimensional vectors for all the models I selected. That is caused by returning the state of the last FC classification layer and the fact all of the models were trained on ImageNet with 1000 classes. In practice, it's typically replaced with identity.

    Are there any reasons for returning the state of that last layer as an embedding? I'd be happy to submit a PR fixing that.

    opened by kacperlukawski 1
  • xception mobilenet

    xception mobilenet

    https://keras.io/api/applications/

    https://www.tensorflow.org/api_docs/python/tf/keras/applications/mobilenet_v2/MobileNetV2 https://www.tensorflow.org/api_docs/python/tf/keras/applications/xception/Xception

    opened by koaning 0
  • 'SentenceEncoder' object has no attribute 'device'

    'SentenceEncoder' object has no attribute 'device'

    text_emb_pipeline = make_pipeline(
      ColumnGrabber("text"),
      SentenceEncoder('all-MiniLM-L6-v2')
    )
    
    # This pipeline can also be trained to make predictions, using
    # the embedded features. 
    text_clf_pipeline = make_pipeline(
      text_emb_pipeline,
      LogisticRegression()
    )
    
    dataf = pd.DataFrame({
      "text": ["positive sentiment", "super negative"],
      "label_col": ["pos", "neg"]
    })
    
    X = text_emb_pipeline.fit_transform(dataf, dataf['label_col'])
    text_clf_pipeline.fit(dataf, dataf['label_col'])
    

    This code gives this error: 'SentenceEncoder' object has no attribute 'device'

    opened by nicholas-dinicola 6
Releases(0.2.2)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
Low-level Python CFFI Bindings for Argon2

Low-level Python CFFI Bindings for Argon2 argon2-cffi-bindings provides low-level CFFI bindings to the Argon2 password hashing algorithm including a v

Hynek Schlawack 4 Dec 15, 2022
Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Step by step development of a vending coffee machine project, including tkinter, sqlite3, simulation, etc.

Nikolaos Avouris 2 Dec 05, 2021
Refer'd Resume Scanner

Refer'd Resume Scanner I wanted to share a free resource we built to assist applicants with resume building. Our resume scanner identifies potential s

Refer'd 74 Mar 07, 2022
Estimate the Market Size for Electic and Plug-In Hybrid Vehicles In Africa

Estimate the Market Size for Electic and Plug-In Hybrid Vehicles In Africa The goal of this repository is to use open data repositories to answer the

Leonce Nshuti 0 Feb 21, 2022
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Junhua Zou 7 Oct 20, 2022
In this project, we'll be creating a virtual personal assistant for ourselves using our favorite programming language

In this project, we'll be creating a virtual personal assistant for ourselves using our favorite programming language, Python. We can perform several offline as well as online operations using the bo

Ashutosh Krishna 188 Jan 03, 2023
Combines power of torch, numerical methods to conquer and solve ALL {O,P}DEs

torch_DE_solver Combines power of torch, numerical methods and math overall to conquer and solve ALL {O,P}DEs There are three examples to provide a li

Natural Systems Simulation Lab 28 Dec 12, 2022
Old versions of Deadcord that are problematic or used as reference.

โš ๏ธ Unmaintained and broken. We have decided to release the old version of Deadcord before our v1.0 rewrite. (which will be equiped with much more feat

Galaxzy 1 Feb 10, 2022
The Great Autoencoder Bake Off

The Great Autoencoder Bake Off The companion repository to a post on my blog. It contains all you need to reproduce the results. Features Currently fe

Tilman Krokotsch 61 Jan 06, 2023
Type Persian without confusing words for yourself and others, in Adobe Connect

About In the Adobe Connect chat section, to type in Persian or Arabic, the written words will be confused and will be written and sent illegibly (This

Matin Najafi 23 Nov 26, 2021
Simple AoC helper program you can use to develop your own solutions in python.

AoC-Compabion Simple AoC helper program you can use to develop your own solutions in python. Simply install it in your python environment using pip fr

Alexander Vollmer 1 Dec 20, 2021
100 Days of Python Programming

100 days of Python Following the initiative of my friend Helber Belmiro, who is almost done with his 100 days of Java, I have decided to start my 100

Henrique Pereira 19 Nov 08, 2021
Convert three types of color in your clipboard and paste it to the color property (gamma correct)

ColorPaster [Blender Addon] Convert three types of color in your clipboard and paste it to the color property (gamma correct) How to Use Hover your mo

13 Oct 31, 2022
CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment

CBOโ€™s CapTax Model CBO uses its Capital Tax model (CBO-CapTax) to estimate the effects of federal taxes on capital income from new investment. Specifi

Congressional Budget Office 7 Dec 16, 2022
๐Ÿ‘€ nothing to see here

Woofy Woofy is blue dog companion token of YFI (Wifey) It utilizes a special Woof bonding curve which allows two-way conversion between the tokens. Th

Yearn Finance 36 Mar 14, 2022
Hands-on machine learning workshop

emb-ntua-workshop This workshop discusses introductory concepts of machine learning and data mining following a hands-on approach using popular tools

ISSEL Soft Eng Team 12 Oct 30, 2022
A competition for forecasting electricity demand at the country-level using a standard backtesting framework

A competition for forecasting electricity demand at the country-level using a standard backtesting framework

5 Jul 12, 2022
Cobalt Strike Sleep Python Bridge

This project is 'bridge' between the sleep and python language. It allows the control of a Cobalt Strike teamserver through python without the need for for the standard GUI client. NOTE: This project

Cobalt Strike 140 Jan 04, 2023
1. ๋„ค์ด๋ฒ„ ์นดํŽ˜ ๋Œ“๊ธ€์„ ๋นจ๋ฆฌ ๋‹ค๋Š” ๊ธฐ๋Šฅ

naver_autoprogram ๊ธฐ๋Šฅ ์„ค๋ช… ๋„ค์ด๋ฒ„ ์นดํŽ˜ ๋Œ“๊ธ€์„ ๋นจ๋ฆฌ ๋‹ค๋Š” ๊ธฐ๋Šฅ ๋„ค์ด๋ฒ„ ์นดํŽ˜ ์ž๋™ ์ถœ์„ ์ฒดํฌ ๊ธฐ๋Šฅ ๋™์ž‘ ๋ฐฉ์‹ ์นดํŽ˜ ๋Œ“๊ธ€ ๊ธฐ๋Šฅ ๊ธฐ๋ณธ ๋™์ž‘์€ ์ฃผ๊ธฐ์ ์ธ ์Šค์ผ€์ฅด ๋™์ž‘์œผ๋กœ ํ•ด๋‹น ์นดํŽ˜ ID ์™€ ํŠน์ • API ์ฃผ์†Œ๋กœ ๋Œ€์ƒ์ด ์ƒˆ๊ธ€์„ ์ž‘์„ฑํ–ˆ๋Š”์ง€ ์ฒดํฌ. ํ•ด๋‹น ๋Œ€์ƒ์ด ์ƒˆ๊ธ€ ๋“ฑ

1 Dec 22, 2021
Um pequeno painel de consulta

Spynel Um pequeno painel com consultas de: IP CEP PLACA CNPJ OBS: caso execute o script pelo termux, recomendo que use o da F-Droid por ser mais atual

Spyware 12 Oct 25, 2022