Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

Overview

TransNAS-Bench-101

This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

In this Markdown file, we show an example how to use TransNAS-Bench-101. The complete network training and evaluation information file can be found through VEGA.

How to use TransNAS-Bench-101

  1. Import the API object in ./code/api/api.py and create an API instance from the .pth file in ./api_home/: ​
from api import TransNASBenchAPI as API
path2nas_bench_file = "./api_home/transnas-bench_v10141024.pth"
api = API(path2nas_bench_file)
  1. Check the task information, number of architectures evaluated, and search spaces:
# show number of architectures and number of tasks
length = len(api)
task_list = api.task_list # list of tasks
print(f"This API contains {length} architectures in total across {len(task_list)} tasks.")
# This API contains 7352 architectures in total across 7 tasks.

# Check all model encoding
search_spaces = api.search_spaces # list of search space names
all_arch_dict = api.all_arch_dict # {search_space : list_of_architecture_names}
for ss in search_spaces:
   print(f"Search space '{ss}' contains {len(all_arch_dict[ss])} architectures.")
print(f"Names of 7 tasks: {task_list}")
# Search space 'macro' contains 3256 architectures.
# Search space 'micro' contains 4096 architectures.
# Names of 7 tasks: ['class_scene', 'class_object', 'room_layout', 'jigsaw', 'segmentsemantic', 'normal', 'autoencoder']
  1. Since different tasks may require different evaluation metrics, hence metric_dict showing the used metrics can be retrieved from api.metrics_dict. TransNAS-Bench API also recorded the model inference time, backbone/model parameters, backbone/model FLOPs in api.infor_names.
metrics_dict = api.metrics_dict # {task_name : list_of_metrics}
info_names = api.info_names # list of model info names

# check the training information of the example task
task = "class_object"
print(f"Task {task} recorded the following metrics: {metrics_dict[task]}")
print(f"The following model information are also recorded: {info_names}")
# Task class_object recorded the following metrics: ['train_top1', 'train_top5', 'train_loss', 'valid_top1', 'valid_top5', 'valid_loss', 'test_top1', 'test_top5', 'test_loss', 'time_elapsed']
# The following model information are also recorded: ['inference_time', 'encoder_params', 'model_params', 'model_FLOPs', 'encoder_FLOPs']
  1. Query the results of an architecture by arch string ​
# Given arch string
xarch = api.index2arch(1) # '64-2311-basic'
for xtask in api.task_list:
    print(f'----- {xtask} -----')
    print(f'--- info ---')
    for xinfo in api.info_names:
        print(f"{xinfo} : {api.get_model_info(xarch, xtask, xinfo)}")
    print(f'--- metrics ---')
    for xmetric in api.metrics_dict[xtask]:
        print(f"{xmetric} : {api.get_single_metric(xarch, xtask, xmetric, mode='best')}")
        print(f"best epoch : {api.get_best_epoch_status(xarch, xtask, metric=xmetric)}")
        print(f"final epoch : {api.get_epoch_status(xarch, xtask, epoch=-1)}")
        if ('valid' in xmetric and 'loss' not in xmetric) or ('valid' in xmetric and 'neg_loss' in xmetric):
            print(f"\nbest_arch -- {xmetric}: {api.get_best_archs(xtask, xmetric, 'micro')[0]}")

A complete example is given in code/api/example.py

  • cd code/api
  • python example.py

Example network encoding in both search spaces

Macro example network: 64-1234-basic
- Base channel: 64
- Macro skeleton: 1234 (4 stacked modules)
  - [m1(normal)-m2(channelx2)-m3(resolution/2)-m4(channelx2 & resolution/2)]
- Cell structure: basic (ResNet Basic Block)

Micro example network: 64-41414-1_02_333
- Base channel: 64
- Macro skeleton: 41414 (5 stacked modules)
  - [m1(channelx2 & resolution/2)-m2(normal)-m3(channelx2 & resolution/2)-m4(normal)-m5(channelx2 & resolution/2)]
- Cell structure: 1_02_333 (4 nodes, 6 edges)
  - node0: input tensor
  - node1: Skip-Connect( node0 ) # 1
  - node2: None( node0 ) + Conv1x1( node1 ) # 02
  - node3: Conv3x3( node0 ) + Conv3x3( node1 ) + Conv3x3( node2 ) # 333

Citation

If you find that TransNAS-Bench-101 helps your research, please consider citing it:

@inproceedings{duan2021transnas,
  title = {TransNAS-Bench-101: Improving Transferability and Generalizability of Cross-Task Neural Architecture Search},
  author = {Duan, Yawen and Chen, Xin and Xu, Hang and Chen, Zewei and Liang, Xiaodan and Zhang, Tong and Li, Zhenguo},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages = {5251--5260},
  year = {2021}
}
Owner
Yawen Duan
Visiting Research Student at CHAI, UC Berkeley; B.Sc. in Decision Analytics at HKU
Yawen Duan
Styled Handwritten Text Generation with Transformers (ICCV 21)

⚡ Handwriting Transformers [PDF] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Fahad Shahbaz Khan & Mubarak Shah Abstract: We

Ankan Kumar Bhunia 85 Dec 22, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Use evolutionary algorithms instead of gridsearch in scikit-learn

sklearn-deap Use evolutionary algorithms instead of gridsearch in scikit-learn. This allows you to reduce the time required to find the best parameter

rsteca 709 Jan 03, 2023
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Pytorch implementation for "Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets" (ECCV 2020 Spotlight)

Distribution-Balanced Loss [Paper] The implementation of our paper Distribution-Balanced Loss for Multi-Label Classification in Long-Tailed Datasets (

Tong WU 304 Dec 22, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022