An easy-to-use Python module that helps you to extract the BERT embeddings for a large text dataset (Bengali/English) efficiently.

Overview

BERTify

This is an easy-to-use python module that helps you to extract the BERT embeddings for a large text dataset efficiently. It is intended to be used for Bengali and English texts.

Specially, optimized for usability in limited computational setups (i.e. free colab/kaggle GPUs). Extracting embeddings for IMDB dataset (a list of 25000 texts) took less than ~28 mins. on Colab's GPU. (Haven't perform any hardcore benchmark, so take these numbers with a grain of salt).

Requirements

  • numpy
  • torch
  • tqdm
  • transformers

Quick Installation

$ pip install git+https://github.com/khalidsaifullaah/BERTify

Usage

num. of texts, 4096 -> embedding dim.) # Example 2: English Embedding Extraction en_bertify = BERTify( lang="en", last_four_layers_embedding=True ) # bn_bertify.batch_size = 96 texts = ["how are you doing?", "I don't know about this.", "This is the most important thing."] en_embeddings = en_bertify.embedding(texts) # shape of the returned matrix in this example 3x3072 (3 -> num. of texts, 3072 -> embedding dim.) ">
from bertify import BERTify

# Example 1: Bengali Embedding Extraction
bn_bertify = BERTify(
    lang="bn",  # language of your text.
    last_four_layers_embedding=True  # to get richer embeddings.
)

# By default, `batch_size` is set to 64. Set `batch_size` higher for making things even faster but higher value than 96 may throw `CUDA out of memory` on Colab's GPU, so try at your own risk.

# bn_bertify.batch_size = 96

# A list of texts that we want the embedding for, can be one or many. (You can turn your whole dataset into a list of texts and pass it into the method for faster embedding extraction)
texts = ["বিখ্যাত হওয়ার প্রথম পদক্ষেপ", "জীবনে সবচেয়ে মূল্যবান জিনিস হচ্ছে", "বেশিরভাগ মানুষের পছন্দের জিনিস হচ্ছে"]

bn_embeddings = bn_bertify.embedding(texts)   # returns numpy matrix 
# shape of the returned matrix in this example 3x4096 (3 -> num. of texts, 4096 -> embedding dim.)




# Example 2: English Embedding Extraction
en_bertify = BERTify(
    lang="en",
    last_four_layers_embedding=True
)

# bn_bertify.batch_size = 96

texts = ["how are you doing?", "I don't know about this.", "This is the most important thing."]
en_embeddings = en_bertify.embedding(texts) 
# shape of the returned matrix in this example 3x3072 (3 -> num. of texts, 3072 -> embedding dim.)

Tips

  • Try passing all your text data through the .embedding() function at once by turning it into a list of texts.
  • For faster inference, make sure you're using your colab/kaggle GPU while making the .embedding() call
  • Try increasing the batch_size to make it even faster, by default we're using 64 (to be on the safe side) which doesn't throw any CUDA out of memory but I believe we can go even further. Thanks to Alex, from his empirical findings, it seems like it can be pushed until 96. So, before making the .embedding() call, you can do bertify.batch_zie=96 to set a larger batch_zie

Definitions


class BERTify(lang: str = "en", last_four_layers_embedding: bool = False)


A module for extracting embedding from BERT model for Bengali or English text datasets. For 'en' -> English data, it uses bert-base-uncased model embeddings, for 'bn' -> Bengali data, it uses sahajBERT model embeddings.

Parameters:

lang (str, optional): language of your data. Currently supports only 'en' and 'bn'. Defaults to 'en'. last_four_layers_embedding (bool, optional): BERT paper discusses they've reached the best results by concatenating the output of the last four layers, so if this argument is set to True, your embedding vector would be (for bert-base model for example) 4*768=3072 dimensional, otherwise it'd be 768 dimensional. Defaults to False.


def BERTify.embedding(texts: List[str])


The embedding function, that takes a list of texts, feed them through the model and returns a list of embeddings.

Parameters:

texts (List[str]): A list of texts, that you want to extract embedding for (e.g. ["This movie was a total waste of time.", "Whoa! Loved this movie, totally loved all the characters"])

Returns:

np.ndarray: A numpy matrix of shape num_of_texts x embedding_dimension

License

MIT License.

Owner
Khalid Saifullah
love to learn new things.
Khalid Saifullah
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Lingtrain Aligner — ML powered library for the accurate texts alignment.

Lingtrain Aligner ML powered library for the accurate texts alignment in different languages. Purpose Main purpose of this alignment tool is to build

Sergei Averkiev 76 Dec 14, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
An open-source NLP library: fast text cleaning and preprocessing.

An open-source NLP library: fast text cleaning and preprocessing

Iaroslav 21 Mar 18, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
A CRM department in a local bank works on classify their lost customers with their past datas. So they want predict with these method that average loss balance and passive duration for future.

Rule-Based-Classification-in-a-Banking-Case. A CRM department in a local bank works on classify their lost customers with their past datas. So they wa

ÖMER YILDIZ 4 Mar 20, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
Abhijith Neil Abraham 2 Nov 05, 2021
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022