Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

Related tags

Deep Learningcql-jax
Overview

CQL-JAX

This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on top of the SAC base of JAX-RL.

Usage

Install Dependencies-

pip install -r requirements.txt
pip install "jax[cuda111]<=0.21.1" -f https://storage.googleapis.com/jax-releases/jax_releases.html

Run CQL-

python train_offline.py --env_name=hopper-expert-v0 --min_q_weight=5

Please use the following values of min_q_weight on MuJoCo tasks to reproduce CQL results from IQL paper-

Domain medium medium-replay medium-expert
walker 10 1 10
hopper 5 5 1
cheetah 90 80 100

For antmaze tasks min_q_weight=10 is found to work best.

In case of Out-Of Memory errors in JAX, try running with the following env variables-

XLA_PYTHON_CLIENT_MEM_FRACTION=0.80 python ...
XLA_FLAGS=--xla_gpu_force_compilation_parallelism=1 python ...

Performance & Runtime

Returns are more or less same as the torch implementation and comparable to IQL-

Task CQL(PyTorch) CQL(JAX) IQL
hopper-medium-v2 58.5 74.6 66.3
hopper-medium-replay-v2 95.0 92.1 94.7
hopper-medium-expert-v2 105.4 83.2 91.5
antmaze-umaze-v0 74.0 69.5 87.5
antmaze-umaze-diverse-v0 84.0 78.7 62.2
antmaze-medium-play-v0 61.2 14.2 71.2
antmaze-medium-diverse-v0 53.7 10.7 70.2
antmaze-large-play-v0 15.8 0.0 39.6
antmaze-large-diverse-v0 14.9 0.0 47.5

Wall-clock time averages to ~50 mins, improving over IQL paper's 80 min CQL and closing the gap with IQL's 20 min.

Task CQL(JAX) IQL
hopper-medium-v2 52 27
hopper-medium-replay-v2 54 30
hopper-medium-expert-v2 57 29

Time efficiency over the original torch implementation is more than 4 times.

For more offline RL algorithm implementations, check out the JAX-RL, IQL and rlkit repositories.

Citation

In case you use CQL-JAX for your research, please cite the following-

@misc{cqljax,
  author = {Suri, Karush},
  title = {{Conservative Q Learning in JAX.}},
  url = {https://github.com/karush17/cql-jax},
  year = {2021}
}

References

Owner
Karush Suri
Deep Learning Researcher at Huawei Noah's Ark Lab, Toronto.
Karush Suri
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022