PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

Overview

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

GitHub release Apache 2.0 Docs Issues


pororo performs Natural Language Processing and Speech-related tasks.

It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name.


Installation

  • pororo is based on torch=1.6(cuda 10.1) and python>=3.6

  • You can install a package through the command below:

pip install pororo
  • Or you can install it locally:
git clone https://github.com/kakaobrain/pororo.git
cd pororo
pip install -e .
  • For library installation for specific tasks other than the common modules, please refer to INSTALL.md

  • For the utilization of Automatic Speech Recognition, wav2letter should be installed separately. For the installation, please run the asr-install.sh file

bash asr-install.sh

Usage

  • pororo can be used as follows:
  • First, in order to import pororo, you must execute the following snippet
>>> from pororo import Pororo
  • After the import, you can check the tasks currently supported by the pororo through the following commands
>>> from pororo import Pororo
>>> Pororo.available_tasks()
"Available tasks are ['mrc', 'rc', 'qa', 'question_answering', 'machine_reading_comprehension', 'reading_comprehension', 'sentiment', 'sentiment_analysis', 'nli', 'natural_language_inference', 'inference', 'fill', 'fill_in_blank', 'fib', 'para', 'pi', 'cse', 'contextual_subword_embedding', 'similarity', 'sts', 'semantic_textual_similarity', 'sentence_similarity', 'sentvec', 'sentence_embedding', 'sentence_vector', 'se', 'inflection', 'morphological_inflection', 'g2p', 'grapheme_to_phoneme', 'grapheme_to_phoneme_conversion', 'w2v', 'wordvec', 'word2vec', 'word_vector', 'word_embedding', 'tokenize', 'tokenise', 'tokenization', 'tokenisation', 'tok', 'segmentation', 'seg', 'mt', 'machine_translation', 'translation', 'pos', 'tag', 'pos_tagging', 'tagging', 'const', 'constituency', 'constituency_parsing', 'cp', 'pg', 'collocation', 'collocate', 'col', 'word_translation', 'wt', 'summarization', 'summarisation', 'text_summarization', 'text_summarisation', 'summary', 'gec', 'review', 'review_scoring', 'lemmatization', 'lemmatisation', 'lemma', 'ner', 'named_entity_recognition', 'entity_recognition', 'zero-topic', 'dp', 'dep_parse', 'caption', 'captioning', 'asr', 'speech_recognition', 'st', 'speech_translation', 'ocr', 'srl', 'semantic_role_labeling', 'p2g', 'aes', 'essay', 'qg', 'question_generation', 'age_suitability']"
  • To check which models are supported by each task, you can go through the following process
>>> from pororo import Pororo
>>> Pororo.available_models("collocation")
'Available models for collocation are ([lang]: ko, [model]: kollocate), ([lang]: en, [model]: collocate.en), ([lang]: ja, [model]: collocate.ja), ([lang]: zh, [model]: collocate.zh)'
  • If you want to perform a specific task, you can put the task name in the task argument and the language name in the lang argument
>>> from pororo import Pororo
>>> ner = Pororo(task="ner", lang="en")
  • After object construction, it can be used in a way that passes the input value as follows:
>>> ner("Michael Jeffrey Jordan (born February 17, 1963) is an American businessman and former professional basketball player.")
[('Michael Jeffrey Jordan', 'PERSON'), ('(', 'O'), ('born', 'O'), ('February 17, 1963)', 'DATE'), ('is', 'O'), ('an', 'O'), ('American', 'NORP'), ('businessman', 'O'), ('and', 'O'), ('former', 'O'), ('professional', 'O'), ('basketball', 'O'), ('player', 'O'), ('.', 'O')]
  • If task supports multiple languages, you can change the lang argument to take advantage of models trained in different languages.
>>> ner = Pororo(task="ner", lang="ko")
>>> ner("마이클 제프리 조던(영어: Michael Jeffrey Jordan, 1963년 2월 17일 ~ )은 미국의 은퇴한 농구 선수이다.")
[('마이클 제프리 조던', 'PERSON'), ('(', 'O'), ('영어', 'CIVILIZATION'), (':', 'O'), (' ', 'O'), ('Michael Jeffrey Jordan', 'PERSON'), (',', 'O'), (' ', 'O'), ('1963년 2월 17일 ~', 'DATE'), (' ', 'O'), (')은', 'O'), (' ', 'O'), ('미국', 'LOCATION'), ('의', 'O'), (' ', 'O'), ('은퇴한', 'O'), (' ', 'O'), ('농구 선수', 'CIVILIZATION'), ('이다.', 'O')]
>>> ner = Pororo(task="ner", lang="ja")
>>> ner("マイケル・ジェフリー・ジョーダンは、アメリカ合衆国の元バスケットボール選手")
[('マイケル・ジェフリー・ジョーダン', 'PERSON'), ('は', 'O'), ('、アメリカ合衆国', 'O'), ('の', 'O'), ('元', 'O'), ('バスケットボール', 'O'), ('選手', 'O')]
>>> ner = Pororo(task="ner", lang="zh")
>>> ner("麥可·傑佛瑞·喬丹是美國退役NBA職業籃球運動員,也是一名商人,現任夏洛特黃蜂董事長及主要股東")
[('麥可·傑佛瑞·喬丹', 'PERSON'), ('是', 'O'), ('美國', 'GPE'), ('退', 'O'), ('役', 'O'), ('nba', 'ORG'), ('職', 'O'), ('業', 'O'), ('籃', 'O'), ('球', 'O'), ('運', 'O'), ('動', 'O'), ('員', 'O'), (',', 'O'), ('也', 'O'), ('是', 'O'), ('一', 'O'), ('名', 'O'), ('商', 'O'), ('人', 'O'), (',', 'O'), ('現', 'O'), ('任', 'O'), ('夏洛特黃蜂', 'ORG'), ('董', 'O'), ('事', 'O'), ('長', 'O'), ('及', 'O'), ('主', 'O'), ('要', 'O'), ('股', 'O'), ('東', 'O')]
  • If the task supports multiple models, you can change the model argument to use another model.
>>> from pororo import Pororo
>>> mt = Pororo(task="mt", lang="multi", model="transformer.large.multi.mtpg")
>>> fast_mt = Pororo(task="mt", lang="multi", model="transformer.large.multi.fast.mtpg")

Documentation

For more detailed information, see full documentation

If you have any questions or requests, please report the issue.


Citation

If you apply this library to any project and research, please cite our code:

@misc{pororo,
  author       = {Heo, Hoon and Ko, Hyunwoong and Kim, Soohwan and
                  Han, Gunsoo and Park, Jiwoo and Park, Kyubyong},
  title        = {PORORO: Platform Of neuRal mOdels for natuRal language prOcessing},
  howpublished = {\url{https://github.com/kakaobrain/pororo}},
  year         = {2021},
}

Contributors

Hoon Heo, Hyunwoong Ko, Soohwan Kim, Gunsoo Han, Jiwoo Park and Kyubyong Park


License

PORORO project is licensed under the terms of the Apache License 2.0.

Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Comments
  • Fix typo on para_gen docstrings and html

    Fix typo on para_gen docstrings and html

    Title

    • fix typo on para_gen docstrings and html

    Description

    • Englosh to English

    Linked Issues

    • resolved #43

    MRC랑 한번에 PR 했어야 했는데.. 여러모로 번거롭게 해드려서 죄송합니다...

    opened by SDSTony 1
  • Fix typo on machine_reading_comprehension.py and mrc.html

    Fix typo on machine_reading_comprehension.py and mrc.html

    Title

    • Fix typo on machine_reading_comprehension.py and mrc.html

    Description

    • Fix typo comprehesion to comprehension found on
    • machine_reading_comprehension.py docstring
    • mrc.html

    Linked Issues

    • resolved #41
    opened by SDSTony 1
  • Fix typo on age_suitability.html

    Fix typo on age_suitability.html

    fix typo from nudiy to nudity

    Title

    • fix typo on age_suitability.html

    Description

    • There is a typo on age_suitability.html page. I think the word Nudiy should be fixed into Nudity. I've edited the html file directly in this PR. If this isn't a proper way to edit a published web document, please cancel this PR. Thank you.

    Linked Issues

    • #39
    opened by SDSTony 1
  • Improve MRC inference and change output

    Improve MRC inference and change output

    Title

    • Improve MRC inference and change output

    Summary

    • Predict span using top10 start&end position
    • Add score output
    • Add logit output

    Description

    In predicting span in the MRC, the existing code used only the maximum value of start position and end position. For a more accurate inference, the top 10 start positions and end positions were used to predict the highest score span. At this time, the score is defined as the sum of start logit and end logit. Finally, I added logit and score to the output for user convenience.

    Examples

    >>> mrc = Pororo(task="mrc", lang="ko")
    >>> mrc(
    >>>    "카카오브레인이 공개한 것은?",
    >>>    "카카오 인공지능(AI) 연구개발 자회사 카카오브레인이 AI 솔루션을 첫 상품화했다. 카카오는 카카오브레인 '포즈(pose·자세분석) API'를 유료 공개한다고 24일 밝혔다. 카카오브레인이 AI 기술을 유료 API를 공개하는 것은 처음이다. 공개하자마자 외부 문의가 쇄도한다. 포즈는 AI 비전(VISION, 영상·화면분석) 분야 중 하나다. 카카오브레인 포즈 API는 이미지나 영상을 분석해 사람 자세를 추출하는 기능을 제공한다."
    >>> )
    ('포즈(pose·자세분석) API',
     (33, 44),
     (5.7833147048950195, 4.649877548217773),
     10.433192253112793)
    >>> # when mecab doesn't work well for postprocess, you can set `postprocess` option as `False`
    >>> mrc("카카오브레인이 공개한 라이브러리 이름은?", "카카오브레인은 자연어 처리와 음성 관련 태스크를 쉽게 수행할 수 있도록 도와 주는 라이브러리 pororo를 공개하였습니다.", postprocess=False)
    ('pororo', (31, 35), (8.656489372253418, 8.14583683013916), 16.802326202392578)
    
    opened by skaurl 0
  • Fixed Code Quality Issues

    Fixed Code Quality Issues

    Title

    • Fixed Code Quality Issues

    Description

    Summary:

    • Remove unnecessary generator
    • Remove methods with an unnecessary super delegation
    • Remove redundant None
    • Add .deepsource.toml

    I ran a DeepSource Analysis on my fork of this repository. You can see all the issues raised by DeepSource here.

    DeepSource helps you to automatically find and fix issues in your code during code reviews. This tool looks for anti-patterns, bug risks, performance problems, and raises issues. There are plenty of other issues in relation to Bug Discovery and Anti-Patterns which you would be interested to take a look at.

    If you do not want to use DeepSource to continuously analyze this repo, I'll remove the .deepsource.toml from this PR and you can merge the rest of the fixes. If you want to setup DeepSource for Continuous Analysis, I can help you set that up.

    opened by HarshCasper 0
  • Update TTS example comment

    Update TTS example comment

    Title

    • Update TTS example comment

    Description

    • Update TTS example comment (Cross-lingual Voice Style Transfer => Code-Switching)

    Linked Issues

    • resolved #00
    opened by sooftware 0
  • Delete unuse files & Add tts example ipynb

    Delete unuse files & Add tts example ipynb

    Title

    • Delete unuse files & Add tts example ipynb

    Description

    • Delete unuse files (examples/.ipynb/, examples/Untitle.ipynb)
    • Add examples/speech_synthesis.ipynb

    Linked Issues

    • resolved #00
    opened by sooftware 0
  • Update TTS

    Update TTS

    Title

    • Denote TTS INSTALL.md & 3rd_party_model & Add tts-install.sh

    Description

    • Denote TTS install requirements
    • Denote 3rd_party_model (TTS)
    • Add tts-install.sh
    • Test complete
    • docstring example update

    Linked Issues

    • resolved #00
    opened by sooftware 0
  • Mount TTS

    Mount TTS

    Title

    • Mount TTS

    Description

    • Mount TTS (Text-To-Speech) Task
    • Update LICENSE.3rd_party_library
    • Add test file (tts)
    • demo page (Not yet completed)

    Linked Issues

    • resolved #00
    opened by sooftware 0
  • Feature/6 kwargs

    Feature/6 kwargs

    Title

    • Add kwargs to __call__ and predict

    Description

    • Add kwargs to __call__ and predict to prevent generate unnecessary custom predict function

    Linked Issues

    • resolved #6
    opened by Huffon 0
  • fix: prevent OSError: read-only file system error

    fix: prevent OSError: read-only file system error

    Description

    I found that there is a chance of OSError to occur when we try to load models into a temporary directory such as in the strictly managed environment like some containers on the cloud.

    [2022-03-23 04:07:37,080] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     review_scoring_model = Pororo(task="review", lang="ko")
    [2022-03-23 04:07:37,080] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/site-packages/pororo/pororo.py", line 203, in __new__
    [2022-03-23 04:07:37,080] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     task_module = SUPPORTED_TASKS[task](
    [2022-03-23 04:07:37,080] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/site-packages/pororo/tasks/review_scoring.py", line 86, in load
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     model = (BrainRobertaModel.load_model(
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/site-packages/pororo/models/brainbert/BrainRoBERTa.py", line 33, in load_model
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     ckpt_dir = download_or_load(model_name, lang)
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/site-packages/pororo/tasks/utils/download_utils.py", line 318, in download_or_load
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     return download_or_load_bert(info)
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/site-packages/pororo/tasks/utils/download_utils.py", line 104, in download_or_load_bert
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     type_dir = download_from_url(
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/site-packages/pororo/tasks/utils/download_utils.py", line 288, in download_from_url
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     wget.download(url, type_dir)
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/site-packages/wget.py", line 506, in download
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     (fd, tmpfile) = tempfile.mkstemp(".tmp", prefix=prefix, dir=".")
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/tempfile.py", line 331, in mkstemp
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     return _mkstemp_inner(dir, prefix, suffix, flags, output_type)
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]   File "/usr/local/lib/python3.8/tempfile.py", line 250, in _mkstemp_inner
    [2022-03-23 04:07:37,081] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000]     fd = _os.open(file, flags, 0o600)
    [2022-03-23 04:07:37,082] {ecs.py:362} INFO - [2022-03-23T04:07:12.901000] OSError: [Errno 30] Read-only file system: './brainbert.base.ko.review_rating.zip4zkvg88b.tmp'
    

    This commit will prevent that to happen. The code for the new function 'download' is originated from wget library written by anatoly techtonik with slight revision done by me.

    opened by daun-io 0
  • Improve MRC inference and change output

    Improve MRC inference and change output

    Title

    • Improve MRC inference and change output

    Summary

    • Predict span using top10 start&end position
    • Add score output
    • Add logit output

    Description

    In predicting span in the MRC, the existing code used only the maximum value of start position and end position. For a more accurate inference, the top 10 start positions and end positions were used to predict the highest score span. At this time, the score is defined as the sum of start logit and end logit. Finally, I added logit and score to the output for user convenience.

    Examples

    >>> mrc = Pororo(task="mrc", lang="ko")
    >>> mrc(
    >>>    "카카오브레인이 공개한 것은?",
    >>>    "카카오 인공지능(AI) 연구개발 자회사 카카오브레인이 AI 솔루션을 첫 상품화했다. 카카오는 카카오브레인 '포즈(pose·자세분석) API'를 유료 공개한다고 24일 밝혔다. 카카오브레인이 AI 기술을 유료 API를 공개하는 것은 처음이다. 공개하자마자 외부 문의가 쇄도한다. 포즈는 AI 비전(VISION, 영상·화면분석) 분야 중 하나다. 카카오브레인 포즈 API는 이미지나 영상을 분석해 사람 자세를 추출하는 기능을 제공한다."
    >>> )
    ('포즈(pose·자세분석) API',
     (33, 44),
     (5.7833147048950195, 4.649877548217773),
     10.433192253112793)
    >>> # when mecab doesn't work well for postprocess, you can set `postprocess` option as `False`
    >>> mrc("카카오브레인이 공개한 라이브러리 이름은?", "카카오브레인은 자연어 처리와 음성 관련 태스크를 쉽게 수행할 수 있도록 도와 주는 라이브러리 pororo를 공개하였습니다.", postprocess=False)
    ('pororo', (31, 35), (8.656489372253418, 8.14583683013916), 16.802326202392578)
    
    opened by skaurl 0
Releases(0.4.0)
  • 0.4.0(Feb 12, 2021)

  • 0.3.2(Feb 3, 2021)

  • 0.3.1(Feb 2, 2021)

    PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

    pororo performs Natural Language Processing and Speech-related tasks.

    It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name.


    Supported Tasks

    You can see more information here !


    TEXT CLASSIFICATION

    • Automated Essay Scoring
    • Age Suitability Prediction
    • Natural Language Inference
    • Paraphrase Identification
    • Review Scoring
    • Semantic Textual Similarity
    • Sentence Embedding
    • Sentiment Analysis
    • Zero-shot Topic Classification

    SEQUENCE TAGGING

    • Contextualized Embedding
    • Dependency Parsing
    • Fill-in-the-blank
    • Machine Reading Comprehension
    • Named Entity Recognition
    • Part-of-Speech Tagging
    • Semantic Role Labeling

    SEQ2SEQ

    • Constituency Parsing
    • Grammatical Error Correction
    • Grapheme-to-Phoneme
    • Phoneme-to-Grapheme
    • Machine Translation
    • Paraphrase Generation
    • Question Generation
    • Text Summarization

    MISC.

    • Automatic Speech Recognition
    • Image Captioning
    • Collocation
    • Lemmatization
    • Morphological Inflection
    • Optical Character Recognition
    • Tokenization
    • Word Translation
    Source code(tar.gz)
    Source code(zip)
Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
This repository contains the code for running the character-level Sandwich Transformers from our ACL 2020 paper on Improving Transformer Models by Reordering their Sublayers.

Improving Transformer Models by Reordering their Sublayers This repository contains the code for running the character-level Sandwich Transformers fro

Ofir Press 53 Sep 26, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
kochat

Kochat 챗봇 빌더는 성에 안차고, 자신만의 딥러닝 챗봇 애플리케이션을 만드시고 싶으신가요? Kochat을 이용하면 손쉽게 자신만의 딥러닝 챗봇 애플리케이션을 빌드할 수 있습니다. # 1. 데이터셋 객체 생성 dataset = Dataset(ood=True) #

1 Oct 25, 2021
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
PORORO: Platform Of neuRal mOdels for natuRal language prOcessing

PORORO: Platform Of neuRal mOdels for natuRal language prOcessing pororo performs Natural Language Processing and Speech-related tasks. It is easy to

Kakao Brain 1.2k Dec 21, 2022
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
End-to-end MLOps pipeline of a BERT model for emotion classification.

image source EmoBERT-MLOps The goal of this repository is to build an end-to-end MLOps pipeline based on the MLOps course from Made with ML, but this

Dimitre Oliveira 4 Nov 06, 2022
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
text to speech toolkit. 好用的中文语音合成工具箱,包含语音编码器、语音合成器、声码器和可视化模块。

ttskit Text To Speech Toolkit: 语音合成工具箱。 安装 pip install -U ttskit 注意 可能需另外安装的依赖包:torch,版本要求torch=1.6.0,=1.7.1,根据自己的实际环境安装合适cuda或cpu版本的torch。 ttskit的

KDD 483 Jan 04, 2023
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Fuzzy String Matching in Python

FuzzyWuzzy Fuzzy string matching like a boss. It uses Levenshtein Distance to calculate the differences between sequences in a simple-to-use package.

SeatGeek 8.8k Jan 01, 2023