SLAMP: Stochastic Latent Appearance and Motion Prediction

Overview

SLAMP: Stochastic Latent Appearance and Motion Prediction

Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Prediction (Adil Kaan Akan, Erkut Erdem, Aykut Erdem, Fatma Guney), accepted and presented at ICCV 2021.

Article

Preprint

Project Website

Pretrained Models

Requirements

All models were trained with Python 3.7.6 and PyTorch 1.4.0 using CUDA 10.1.

A list of required Python packages is available in the requirements.txt file.

Datasets

For preparations of datasets, we followed SRVP's code. Please follow the links below if you want to construct the datasets.

Stochastic Moving MNIST

KTH

BAIR

KITTI

For KITTI, you need to download the Raw KITTI dataset and extract the zip files. You can follow the official KITTI page.

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=310, h=92). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Cityscapes

For Cityscapes, you need to download leftImg8bit_sequence from the official Cityscapes page.

leftImg8bit_sequence contains 30-frame snippets (17Hz) surrounding each left 8-bit image (-19 | +10) from the train, val, and test sets (150000 images).

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=256, h=128). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Training

To train a new model, the script train.py should be used as follows:

Data directory ($DATA_DIR) and $SAVE_DIR must be given using options --data_root $DATA_DIR --log_dir $SAVE_DIR. To use GPU, you need to use --device flag.

  • for Stochastic Moving MNIST:
--n_past 5 --n_future 10 --n_eval 25 --z_dim_app 20 --g_dim_app 128 --z_dim_motion 20
--g_dim_motion 128 --last_frame_skip --running_avg --batch_size 32
  • for KTH:
--dataset kth --n_past 10 --n_future 10 --n_eval 40 --z_dim_app 50 --g_dim_app 128 --z_dim_motion 50 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20
  • for BAIR:
--dataset bair --n_past 2 --n_future 10 --n_eval 30 --z_dim_app 64 --g_dim_app 128 --z_dim_motion 64 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20 --channels 3
  • for KITTI:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 8
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3
  • for Cityscapes:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 7
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3 --epoch_size 1300

Testing

To evaluate a trained model, the script evaluate.py should be used as follows:

python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH

where $LOG_DIR is a directory where the results will be saved, $DATADIR is the directory containing the test set.

Important note: The directory containing the script should include a directory called lpips_weights which contains v0.1 LPIPS weights (from the official repository of The Unreasonable Effectiveness of Deep Features as a Perceptual Metric).

To run the evaluation on GPU, use the option --device.

Pretrained weight links with Dropbox - For MNIST:
wget https://www.dropbox.com/s/eseisehe2u0epiy/slamp_mnist.pth
  • For KTH:
wget https://www.dropbox.com/s/7m0806nt7xt9bz8/slamp_kth.pth
  • For BAIR:
wget https://www.dropbox.com/s/cl1pzs5trw3ltr0/slamp_bair.pth
  • For KITTI:
wget https://www.dropbox.com/s/p7wdboswakyj7yi/slamp_kitti.pth
  • For Cityscapes:
wget https://www.dropbox.com/s/lzwiivr1irffhsj/slamp_cityscapes.pth

PSNR, SSIM, and LPIPS results reported in the paper were obtained with the following options:

  • for stochastic Moving MNIST:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 5 --n_future 20
  • for KTH:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 30
  • for BAIR:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 2 --n_future 28
  • for KITTI:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20
  • for Cityscapes:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20

To calculate FVD results, you can use calculate_fvd.py script as follows:

python calculate_fvd.py $LOG_DIR $SAMPLE_NAME

where $LOG_DIR is the directory containg the results generated by the evaluate script and $SAMPLE_NAME is the file which contains the samples such as psnr.npz, ssim.npz or lpips.npz. The script will print the FVD value at the end.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@InProceedings{Akan2021ICCV,
    author    = {Akan, Adil Kaan and Erdem, Erkut and Erdem, Aykut and Guney, Fatma},
    title     = {SLAMP: Stochastic Latent Appearance and Motion Prediction},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14728-14737}
}

Acknowledgments

We would like to thank SRVP and SVG authors for making their repositories public. This repository contains several code segments from SRVP's repository and SVG's repository. We appreciate the efforts by Berkay Ugur Senocak for cleaning the code before release.

You might also like...
 Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

[arXiv] What-If Motion Prediction for Autonomous Driving β“πŸš—πŸ’¨
[arXiv] What-If Motion Prediction for Autonomous Driving β“πŸš—πŸ’¨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

 Waymo motion prediction challenge 2021: 3rd place solution
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution πŸ“œ Technical report πŸ—¨οΈ Presentation πŸŽ‰ Announcement πŸ›†Motion Prediction Channel Website πŸ›†

Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

Comments
  • Details on KTH and BAIR Validation Sets

    Details on KTH and BAIR Validation Sets

    Hi! Thanks for providing the implementation of SLAMP. In the data processing scripts (data/kth.py and data/bair.py), how do you generate kth_valset_40.npz and bair_valset_30.npz? Is it following the SRVP's code for generating test sets? Could you please provide some details on those sets? Thank you!

    opened by hanghang177 4
  • nsample missing arguments

    nsample missing arguments

    Hi during running your code, i was unexpectedly see an error due to missing arguments

    File "/notebooks/slamp/helpers.py", line 362, in eval_step nsample = opt.nsample

    File args.py doesnt have any definition about nsample, what does nsample mean? I suppose it should be the number of samples per batch in evaluation which means eval batch size Thanks for your reading

    opened by eric-le-12 1
Releases(v1.0)
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transformer for Efficient Spatiotemporal Representation Learning". It curren

SenseTime X-Lab 573 Jan 04, 2023
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Tensorflow Tutorials using Jupyter Notebook

Tensorflow Tutorials using Jupyter Notebook TensorFlow tutorials written in Python (of course) with Jupyter Notebook. Tried to explain as kindly as po

Sungjoon 2.6k Dec 22, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Conversational text Analysis using various NLP techniques

PyConverse Let me try first Installation pip install pyconverse Usage Please try this notebook that demos the core functionalities: basic usage noteb

Rita Anjana 158 Dec 25, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022