Dilated Convolution with Learnable Spacings PyTorch

Overview

Dilated-Convolution-with-Learnable-Spacings-PyTorch

Ismail Khalfaoui Hassani

Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a novel convolution method based on gradient descent and interpolation. It could be seen as an improvement of the well known dilated convolution that has been widely explored in deep convolutional neural networks and which aims to inflate the convolutional kernel by inserting spaces between the kernel elements.

In DCLS, the positions of the weights within the convolutional kernel are learned in a gradient-based manner, and the inherent problem of non-differentiability due to the integer nature of the positions in the kernel is solved by taking advantage of an interpolation method.

For now, the code has only been implemented on PyTorch, using Pytorch's C++ API and custom cuda extensions.

Installation

DCLS is based on PyTorch and CUDA. Please make sure that you have installed all the requirements before you install DCLS.

Install the last stable version from PyPI:

coming soon

Install the latest developing version from the source codes:

From GitHub:

git clone https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch.git
cd Dilated-Convolution-with-Learnable-Spacings-PyTorch
python ./setup.py install 

To prevent bad install directory or PYTHONPATH, please use

export PYTHONPATH=path/to/your/Python-Ver/lib/pythonVer/site-packages/
python ./setup.py install --prefix=path/to/your/Python-Ver/

Usage

Dcls methods could be easily used as a substitue of Pytorch's nn.Convnd classical convolution method:

from DCLS.modules.Dcls import Dcls2d

# With square kernels, equal stride and dilation
m = Dcls2d(16, 33, 3, dilation=4, stride=2)
# non-square kernels and unequal stride and with padding`and dilation
m = Dcls2d(16, 33, (3, 5), dilation=4, stride=(2, 1), padding=(4, 2))
# non-square kernels and unequal stride and with padding and dilation
m = Dcls2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 2))
# non-square kernels and unequal stride and with padding and dilation
m = Dcls2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 2))
# With square kernels, equal stride, dilation and a scaling gain for the positions
m = Dcls2d(16, 33, 3, dilation=4, stride=2, gain=10)
input = torch.randn(20, 16, 50, 100)
output = m(input)

Note: using Dcls2d with a dilation argument of 1 basically amounts to using nn.Conv2d, therfore DCLS should always be used with a dilation > 1.

Construct and Im2col methods

The constructive DCLS method presents a performance problem when moving to larger dilations (greater than 7). Indeed, the constructed kernel is largely sparse (it has a sparsity of 1 - 1/(d1 * d2)) and the zeros are effectively taken into account during the convolution leading to great losses of performance in time and memory and this all the more as the dilation is large.

This is why we implemented an alternative method by adapting the im2col algorithm which aims to speed up the convolution by unrolling the input into a Toepliz matrix and then performing matrix multiplication.

You can use both methods by importing the suitable modules as follows:

from DCLS.construct.modules.Dcls import  Dcls2d as cDcls2d

# Will construct three (33, 16, (3x4), (3x4)) Tensors for weight, P_h positions and P_w positions 
m = cDcls2d(16, 33, 3, dilation=4, stride=2, gain=10)
input = torch.randn(20, 16, 50, 100)
output = m(input)
from DCLS.modules.Dcls import  Dcls2d 

# Will not construct kernels and will perform im2col algorithm instead 
m = Dcls2d(16, 33, 3, dilation=4, stride=2, gain=10)
input = torch.randn(20, 16, 50, 100)
output = m(input)

Note: in the im2col Dcls method the two extra learnable parameters P_h and P_w are of size channels_in // group x kernel_h x kernel_w, while in the construct method they are of size channels_out x channels_in // group x kernel_h x kernel_w

Device Supports

DCLS only supports Nvidia CUDA GPU devices for the moment. The CPU version has not been implemented yet.

  • Nvidia GPU
  • CPU

Make sure to have your data and model on CUDA GPU. DCLS-im2col doesn't support mixed precision operations for now. By default every tensor is converted to have float32 precision.

Publications and Citation

If you use DCLS in your work, please consider to cite it as follows:

@misc{Dilated Convolution with Learnable Spacings,
	title = {Dilated Convolution with Learnable Spacings},
	author = {Ismail Khalfaoui Hassani},
	year = {2021},
	howpublished = {\url{https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch}},
	note = {Accessed: YYYY-MM-DD},
}

Contribution

This project is open source, therefore all your contributions are welcomed, whether it's reporting issues, finding and fixing bugs, requesting new features, and sending pull requests ...

NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
Official implementation of the ICLR 2021 paper

You Only Need Adversarial Supervision for Semantic Image Synthesis Official PyTorch implementation of the ICLR 2021 paper "You Only Need Adversarial S

Bosch Research 272 Dec 28, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
A code generator from ONNX to PyTorch code

onnx-pytorch Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1. Installation From PyPI pip install onnx-pytorch From

Wenhao Hu 94 Jan 06, 2023
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023