Weakly Supervised Segmentation by Tensorflow.

Overview

Simple-does-it-weakly-supervised-instance-and-semantic-segmentation

There are five weakly supervised networks in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017). Respectively, Naive, Box, Box^i, Grabcut+, M∩G+. All of them use cheap-to-generate label, bounding box, during training and don't need other informations except image during testing.

This repo contains a TensorFlow implementation of Grabcut version of semantic segmentation.

My Environment

Environment 1

  • Operating System:
    • Arch Linux 4.15.15-1
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7.0.5-2
  • GPU:
    • GTX 1070 8G
  • Nvidia driver:
    • 390.25
  • Python:
    • python 3.6.4
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.5.0

Environment 2

  • Operating System:
    • Ubuntu 16.04
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7
  • GPU:
    • GTX 1060 6G
  • Nvidia driver:
    • 390.48
  • Python:
    • python 3.5.2
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.6.0

Downloading the VOC12 dataset

Setup Dataset

My directory structure

./Simple_does_it/
├── Dataset
│   ├── Annotations
│   ├── CRF_masks
│   ├── CRF_pairs
│   ├── Grabcut_inst
│   ├── Grabcut_pairs
│   ├── JPEGImages
│   ├── Pred_masks
│   ├── Pred_pairs
│   ├── SegmentationClass
│   └── Segmentation_label
├── Model
│   ├── Logs
│   └── models
├── Parser_
├── Postprocess
├── Preprocess
└── Util

VOC2012 directory structure

VOCtrainval_11-May-2012
└── VOCdevkit
    └── VOC2012
        ├── Annotations
        ├── ImageSets
        │   ├── Action
        │   ├── Layout
        │   ├── Main
        │   └── Segmentation
        ├── JPEGImages
        ├── SegmentationClass
        └── SegmentationObject
  • Put annotations in 'Annotations'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/Annotations/* {PATH}/Simple_does_it/Dataset/Annotations/ 
  • Put images in 'JPEGImages'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/JPEGImages/* {PATH}/Simple_does_it/Dataset/JPEGImages/
  • Put Ground truth in 'SegmentationClass' for computing mIoU and IoU
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/SegmentationClass/* {PATH}/Simple_does_it/Dataset/SegmentationClass/

Demo (See Usage for more details)

Download pretrain model training on VOC12 (train set size: 1464)

  • Pretrain model
    • Move files from VOC12_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 1020
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt --restore_target 1020   
    
  • Performance
set CRF mIoU
train X 64.93%
train O 66.90%
val X 39.03%
val O 42.54%

Download pretrain model training on VOC12 + SBD (train set size: 10582)

  • Pretrain model
    • Move files from VOC12_SBD_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 538
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name train.txt --restore_target 538
    
  • Performance
set CRF mIoU
train X 66.87%
train O 68.21%
val X 51.90%
val O 54.52%

Training (See Usage for more details)

Download pretrain vgg16

Extract annotations from 'Annotations' according to 'train.txt' or 'voc_train.txt' for VOC12 + SDB or VOC12

  • For VOC12 + SBD (train set size: 10582)
    • This will generate a 'train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py 
    
  • For VOC12 (train set size: 1464)
    • This will generate a 'voc_train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py --train_set_name voc_train.txt --train_pair_name voc_train_pairs.txt
    

Generate label for training by 'grabcut.py'

  • Result of grabcut for each bounding box will be stored at 'Grabcut_inst'
  • Result of grabcut for each image will be stored at 'Segmentation_label'
  • Result of grabcut for each image combing with image and bounding box will be stored at 'Grabcut_pairs'
  • Note: If the instance hasn't existed at 'Grabcut_inst', grabcut.py will grabcut that image
  • For VOC12 + SBD (train set size: 10582)
    python ./Preprocess/grabcut.py
    
  • For VOC12 (train set size: 1464)
    python ./Preprocess/grabcut.py --train_pair_name voc_train_pairs.txt
    

Train network

  • The event file for tensorboard will be stored at 'Logs'
  • Train on VOC12 + SBD (train set size: 10582)
    • This will consume lot of memory.
      • The train set is so large.
      • Data dtyp will be casted from np.uint8 to np.float16 for mean substraction.
    • Eliminate mean substraction for lower memory usage.
      • Change the dtype in ./Dataset/load.py from np.float16 to np.uint8
      • Comment mean substraction in ./Model/model.py
    python ./Model/model.py --is_train 1 --set_name train.txt   
    
  • Train on VOC12 (train set size: 1464)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt   
    

Testing (See Usage for more details)

Test network

  • Result will be stored at 'Pred_masks'
  • Result combing with image will be stored at 'Pred_pairs'
  • Result after dense CRF will be stored at 'CRF_masks'
  • Result after dense CRF combing with image will be stored at 'CRF_pairs'
  • Test on VOC12 (val set size: 1449)
    python ./Model/model.py --restore_target {num}
    

Performance (See Usage for more details)

Evaluate mIoU and IoU

  • Compute mIoU and IoU
    python ./Dataset/mIoU.py 
    

Usage

Parser_/parser.py

  • Parse the command line argument

Util/divied.py

  • Generating train.txt and test.txt according to 'JPEGImages'
  • Not necessary
usage: divied.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                 [--train_set_ratio TRAIN_SET_RATIO]
                 [--train_set_name TRAIN_SET_NAME]
                 [--test_set_name TEST_SET_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default: Util/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_set_ratio TRAIN_SET_RATIO
                        ratio for training set, [0,10] (default: 7)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --test_set_name TEST_SET_NAME
                        name for testing set (default: val.txt)

Dataset/make_train.py

  • Extract annotations from 'Annotations' according to 'train.txt'
  • Content: {image name}###{image name + num + class + .png}###{bbox ymin}###{bbox xmin}###{bbox ymax}###{bbox xmax}###{class}
  • Example: 2011_003038###2011_003038_3_15.png###115###1###233###136###person
usage: make_train.py [-h] [--dataset DATASET]
                     [--train_set_name TRAIN_SET_NAME]
                     [--ann_dir_name ANN_DIR_NAME]
                     [--train_pair_name TRAIN_PAIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        Dataset/../Parser_/../Dataset)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --ann_dir_name ANN_DIR_NAME
                        name for annotation directory (default: Annotations)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)

Preprocess/grabcut.py

  • Grabcut a traditional computer vision method
  • Input bounding box and image then generating label for training
usage: grabcut.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                  [--train_pair_name TRAIN_PAIR_NAME]
                  [--grabcut_dir_name GRABCUT_DIR_NAME]
                  [--img_grabcuts_dir IMG_GRABCUTS_DIR]
                  [--pool_size POOL_SIZE] [--grabcut_iter GRABCUT_ITER]
                  [--label_dir_name LABEL_DIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Preprocess/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)
  --grabcut_dir_name GRABCUT_DIR_NAME
                        name for grabcut directory (default: Grabcut_inst)
  --img_grabcuts_dir IMG_GRABCUTS_DIR
                        name for image with grabcuts directory (default:
                        Grabcut_pairs)
  --pool_size POOL_SIZE
                        pool for multiprocess (default: 4)
  --grabcut_iter GRABCUT_ITER
                        grabcut iteration (default: 3)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)

Model/model.py

  • Deeplab-Largefov
usage: model.py [-h] [--dataset DATASET] [--set_name SET_NAME]
                [--label_dir_name LABEL_DIR_NAME]
                [--img_dir_name IMG_DIR_NAME] [--classes CLASSES]
                [--batch_size BATCH_SIZE] [--epoch EPOCH]
                [--learning_rate LEARNING_RATE] [--momentum MOMENTUM]
                [--keep_prob KEEP_PROB] [--is_train IS_TRAIN]
                [--save_step SAVE_STEP] [--pred_dir_name PRED_DIR_NAME]
                [--pair_dir_name PAIR_DIR_NAME] [--crf_dir_name CRF_DIR_NAME]
                [--crf_pair_dir_name CRF_PAIR_DIR_NAME] [--width WIDTH]
                [--height HEIGHT] [--restore_target RESTORE_TARGET]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Model/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --classes CLASSES     number of classes for segmentation (default: 21)
  --batch_size BATCH_SIZE
                        batch size for training (default: 16)
  --epoch EPOCH         epoch for training (default: 2000)
  --learning_rate LEARNING_RATE
                        learning rate for training (default: 0.01)
  --momentum MOMENTUM   momentum for optimizer (default: 0.9)
  --keep_prob KEEP_PROB
                        probability for dropout (default: 0.5)
  --is_train IS_TRAIN   training or testing [1 = True / 0 = False] (default:
                        0)
  --save_step SAVE_STEP
                        step for saving weight (default: 2)
  --pred_dir_name PRED_DIR_NAME
                        name for prediction masks directory (default:
                        Pred_masks)
  --pair_dir_name PAIR_DIR_NAME
                        name for pairs directory (default: Pred_pairs)
  --crf_dir_name CRF_DIR_NAME
                        name for crf prediction masks directory (default:
                        CRF_masks)
  --crf_pair_dir_name CRF_PAIR_DIR_NAME
                        name for crf pairs directory (default: CRF_pairs)
  --width WIDTH         width for resize (default: 513)
  --height HEIGHT       height for resize (default: 513)
  --restore_target RESTORE_TARGET
                        target for restore (default: 0)

Dataset/mIoU.py

  • Compute mIoU and IoU
usage: mIoU.py [-h] [--dataset DATASET] [--set_name SET_NAME]
               [--GT_dir_name GT_DIR_NAME] [--Pred_dir_name PRED_DIR_NAME]
               [--classes CLASSES]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Dataset/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --GT_dir_name GT_DIR_NAME
                        name for ground truth directory (default:
                        SegmentationClass)
  --Pred_dir_name PRED_DIR_NAME
                        name for prediction directory (default: CRF_masks)
  --classes CLASSES     number of classes (default: 21)

Dataset/load.py

  • Loading data for training / testing according to train.txt / val.txt

Dataset/save_result.py

  • Save result during testing

Dataset/voc12_class.py

  • Map the class to grayscale value

Dataset/voc12_color.py

  • Map the grayscale value to RGB

Postprocess/dense_CRF.py

  • Dense CRF a machine learning method
  • Refine the result

Reference

Owner
CHENG-YOU LU
CHENG-YOU LU
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Autoregressive Models in PyTorch.

Autoregressive This repository contains all the necessary PyTorch code, tailored to my presentation, to train and generate data from WaveNet-like auto

Christoph Heindl 41 Oct 09, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022