An efficient framework for reinforcement learning.

Overview

rl: An efficient framework for reinforcement learning

Python

Requirements

name version
Python >=3.7
numpy >=1.19
torch >=1.7
tensorboard >=2.5
tensorboardX >=2.4
gym >=0.18.3

Make sure your Python environment is activated before installing following requirements.
pip install -U gym tensorboard tensorboardx

Introduction

Quick Start

CartPole-v0:
python demo.py
Enter the following commands in terminal to start training Pendulum-v0:
python demo.py --env_name Pendulum-v0 --target_reward -250.0
Use Recurrent Neural Network:
python demo.py --env_name Pendulum-v0 --target_reward -250.0 --use_rnn --log_dir Pendulum-v0_RNN
Open a new terminal:
tensorboard --logdir=result
Then you can access the training information by visiting http://localhost:6006/ in browser.

Structure

Proximal Policy Optimization

PPO is an on-policy and model-free reinforcement learning algorithm.

Components

  • Generalized Advantage Estimation (GAE)
  • Gate Recurrent Unit (GRU)

Hyperparameters

hyperparameter note value
env_num number of parallel processes 16
chunk_len BPTT for GRU 10
eps clipping parameter 0.2
gamma discount factor 0.99
gae_lambda trade-off between TD and MC 0.95
entropy_coef coefficient of entropy 0.05
ppo_epoch data usage 5
adv_norm normalized advantage 1 (True)
max_norm gradient clipping (L2) 20.0
weight_decay weight decay (L2) 1e-6
lr_actor learning rate of actor network 1e-3
lr_critic learning rate of critic network 1e-3

Test Environment

A simple test environment for verifying the effectiveness of this algorithm (of course, the algorithm can also be implemented by yourself).
Simple logic with less code.

Mechanism

The environment chooses one number randomly in every step, and returns the one-hot matrix.
If the action taken matches the number chosen in the last 3 steps, you will get a complete reward of 1.

>>> from env.test_env import TestEnv
>>> env = TestEnv()
>>> env.seed(0)
>>> env.reset()
array([1., 0., 0.], dtype=float32)
>>> env.step(9 * 0 + 3 * 0 + 1 * 0)
(array([0., 1., 0.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>> env.step(9 * 1 + 3 * 0 + 1 * 0)
(array([1., 0., 0.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>> env.step(9 * 0 + 3 * 1 + 1 * 0)
(array([0., 1., 0.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>> env.step(9 * 0 + 3 * 1 + 1 * 0)
(array([0., 1., 0.], dtype=float32), 0.0, False, {'str': 'Completely wrong.'})
>>> env.step(9 * 0 + 3 * 1 + 1 * 0)
(array([0., 0., 1.], dtype=float32), 0.6666666666666666, False, {'str': 'Partially correct.'})
>>> env.step(9 * 2 + 3 * 0 + 1 * 0)
(array([1., 0., 0.], dtype=float32), 0.3333333333333333, False, {'str': 'Partially correct.'})
>>> env.step(9 * 0 + 3 * 2 + 1 * 1)
(array([0., 0., 1.], dtype=float32), 1.0, False, {'str': 'Completely correct.'})
>>>

Convergence Reward

  • General RL algorithms will achieve an average reward of 55.5.
  • Because of the state memory unit, RNN based RL algorithms can reach the goal of 100.0.

2021, ICCD Lab, Dalian University of Technology. Author: Jingcheng Jiang.

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Official implementation for the paper: Multi-label Classification with Partial Annotations using Class-aware Selective Loss

Multi-label Classification with Partial Annotations using Class-aware Selective Loss Paper | Pretrained models Official PyTorch Implementation Emanuel

99 Dec 27, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and ap

3.4k Jan 04, 2023
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the time series forecasting research space.

TSForecasting This repository contains the implementations related to the experiments of a set of publicly available datasets that are used in the tim

Rakshitha Godahewa 80 Dec 30, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021