Existing Literature about Machine Unlearning

Overview

Machine Unlearning Papers

2021

Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021.

Bourtoule et al. Machine Unlearning. In IEEE Symposium on Security and Privacy 2021.

Gupta et al. Adaptive Machine Unlearning. In Neurips 2021.

Huang et al. Unlearnable Examples: Making Personal Data Unexploitable. In ICLR 2021.

Neel et al. Descent-to-Delete: Gradient-Based Methods for Machine Unlearning. In ALT 2021.

Schelter et al. HedgeCut: Maintaining Randomised Trees for Low-Latency Machine Unlearning. In SIGMOD 2021.

Sekhari et al. Remember What You Want to Forget: Algorithms for Machine Unlearning. In Neurips 2021.

arXiv

Chen et al. Graph Unlearning. In arXiv 2021.

Chen et al. Machine unlearning via GAN. In arXiv 2021.

Fu et al. Bayesian Inference Forgetting. In arXiv 2021.

He et al. DeepObliviate: A Powerful Charm for Erasing Data Residual Memory in Deep Neural Networks. In arXiv 2021.

Khan and Swaroop. Knowledge-Adaptation Priors. In arXiv 2021.

Marchant et al. Hard to Forget: Poisoning Attacks on Certified Machine Unlearning . In arXiv 2021.

Parne et al. Machine Unlearning: Learning, Polluting, and Unlearning for Spam Email. In arXiv 2021.

Tarun et al. Fast Yet Effective Machine Unlearning . In arXiv 2021.

Ullah et al. Machine Unlearning via Algorithmic Stability. In arXiv 2021.

Wang et al. Federated Unlearning via Class-Discriminative Pruning . In arXiv 2021.

Warnecke et al. Machine Unlearning for Features and Labels. In arXiv 2021.

Zeng et al. Learning to Refit for Convex Learning Problems In arXiv 2021.

2020

Guo et al. Certified Data Removal from Machine Learning Models. In ICML 2020.

Golatkar et al. Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep Networks. In CVPR 2020.

Wu et. al DeltaGrad: Rapid Retraining of Machine Learning Models. In ICML 2020.

arXiv

Aldaghri et al. Coded Machine Unlearning. In arXiv 2020.

Baumhauer et al. Machine Unlearning: Linear Filtration for Logit-based Classifiers. In arXiv 2020.

Garg et al. Formalizing Data Deletion in the Context of the Right to be Forgotten. In arXiv 2020.

Chen et al. When Machine Unlearning Jeopardizes Privacy. In arXiv 2020.

Felps et al. Class Clown: Data Redaction in Machine Unlearning at Enterprise Scale. In arXiv 2020.

Golatkar et al. Mixed-Privacy Forgetting in Deep Networks. In arXiv 2020.

Golatkar et al. Forgetting Outside the Box: Scrubbing Deep Networks of Information Accessible from Input-Output Observations. In arXiv 2020.

Izzo et al. Approximate Data Deletion from Machine Learning Models: Algorithms and Evaluations. In arXiv 2020.

Liu et al. Learn to Forget: User-Level Memorization Elimination in Federated Learning. In arXiv 2020.

Sommer et al. Towards Probabilistic Verification of Machine Unlearning. In arXiv 2020.

Yiu et al. Learn to Forget: User-Level Memorization Elimination in Federated Learning. In arXiv 2020.

Yu et al. Membership Inference with Privately Augmented Data Endorses the Benign while Suppresses the Adversary. In arXiv 2020.

2019

Chen et al. A Novel Online Incremental and Decremental Learning Algorithm Based on Variable Support Vector Machine. In Cluster Computing 2019.

Ginart et al. Making AI Forget You: Data Deletion in Machine Learning. In NeurIPS 2019.

Schelter. “Amnesia” – Towards Machine Learning Models That Can Forget User Data Very Fast. In AIDB 2019.

Shintre et al. Making Machine Learning Forget. In APF 2019.

Du et al. Lifelong Anomaly Detection Through Unlearning. In CCS 2019.

Wang et al. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In IEEE Symposium on Security and Privacy 2019.

arXiv

Tople te al. Analyzing Privacy Loss in Updates of Natural Language Models. In arXiv 2019.

2018

Cao et al. Efficient Repair of Polluted Machine Learning Systems via Causal Unlearning. In ASIACCS 2018.

European Union. GDPR, 2018.

State of California. California Consumer Privacy Act, 2018.

Veale et al. Algorithms that remember: model inversion attacks and data protection law. In The Royal Society 2018.

Villaronga et al. Humans Forget, Machines Remember: Artificial Intelligence and the Right to Be Forgotten. In Computer Law & Security Review 2018.

2017

Kwak et al. Let Machines Unlearn--Machine Unlearning and the Right to be Forgotten. In SIGSEC 2017.

Shokri et al. Membership Inference Attacks Against Machine Learning Models. In SP 2017.

Before 2017

Cao and Yang. Towards Making Systems Forget with Machine Unlearning. In IEEE Symposium on Security and Privacy 2015.

Tsai et al. Incremental and decremental training for linear classification. In KDD 2014.

Karasuyama and Takeuchi. Multiple Incremental Decremental Learning of Support Vector Machines. In NeurIPS 2009.

Duan et al. Decremental Learning Algorithms for Nonlinear Langrangian and Least Squares Support Vector Machines. In OSB 2007.

Romero et al. Incremental and Decremental Learning for Linear Support Vector Machines. In ICANN 2007.

Tveit et al. Incremental and Decremental Proximal Support Vector Classification using Decay Coefficients. In DaWaK 2003.

Tveit and Hetland. Multicategory Incremental Proximal Support Vector Classifiers. In KES 2003.

Cauwenberghs and Poggio. Incremental and Decremental Support Vector Machine Learning. In NeurIPS 2001.

Canada. PIPEDA, 2000.

Owner
Jonathan Brophy
PhD student at UO.
Jonathan Brophy
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Jianwei ZHANG 8 Oct 14, 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
This is the code for "HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields".

HyperNeRF: A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields This is the code for "HyperNeRF: A Higher-Dimensional

Google 702 Jan 02, 2023
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022