Xeasy-ml is a packaged machine learning framework.

Overview

xeasy-ml

1. What is xeasy-ml

Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use the model to process and analyze his own data. At the same time, we have also realized the automatic analysis of data. During data processing, xeasy-ml will automatically draw data box plots, distribution histograms, etc., and perform feature correlation analysis to help users quickly discover the value of data.

2.Installation

Dependencies

xeasy-ml requires:

Scikit-learn >= 0.24.1

Pandas >= 0.24.2

Numppy >= 1.19.5

Matplotlib >= 3.3.4

Pydotplus >= 2.0.2

Xgboost >= 1.4.2

User installation

pip install xeasy-ml

3. Quick Start

1.Create a new project

Create a new python file named pro_init.py to initialize the project.

from xeasy_ml.project_init.create_new_demo import create_project
import os

pro_path = os.getcwd()
create_project(pro_path)

Now you can see the following file structure in your project.

├── Your_project
     ...
│   ├── pro_init.py
│   ├── project
│   │   └── your_project

2.Run example

cd project/your_project

python __main__.py

3.View Results

cd project/your_project_name/result/v1
ls -l
├── box   (Box plot)
├── cross_predict.txt (Cross-validation prediction file)
├── cross.txt  (Cross validation effect evaluation)
├── deleted_feature.txt  (Features that need to be deleted)
├── demo_feature_weight.txt  (Feature weights)
├── demo.m   (Model)
├── feature_with_feature  (Feature similarity)
├── feature_with_label   (Similarity between feature and label )
├── hist    (Distribution histogram)
├── model
├── predict_result.txt  (Test set prediction results)
└── test_score.txt      (Score on the test set)


xeasy-ml中文文档

1. 简介

​ xeasy-ml是一个封装的机器学习框架。它允许初学者快速建立机器学习模型,并使用该模型处理和分析自己的数据。同时,还实现了数据的自动分析。在数据处理过程中,xeasy-ml会自动绘制数据的箱线图、分布直方图等,并进行特征相关性分析,帮助用户快速发现数据的价值。

2.安装

依赖包:

Scikit-learn >= 0.24.1
Pandas >= 0.24.2
Numppy >= 1.19.5
Matplotlib >= 3.3.4
Pydotplus >= 2.0.2
Xgboost >= 1.4.2

​ 安装:

pip install xeasy-ml

3.如何使用

1.创建自己的项目

#创建一个名为pro_init.py的新python文件来初始化项目。
from xeasy_ml.project_init.create_new_demo import create_project
import os
pro_path = os.getcwd()
create_project(pro_path)
#在pro_init.py同级目录下可以看到以下目录结构:
├── Your_project
 	 ...
	├── pro_init.py
	├── project
	│  └── your_project

2.运行

cd project/your_project
python __main__.py

3.查看结果

cd project/your_project_name/result/v1
ls -l

  ├── box  (箱线图)

  ├── cross_predict.txt (交叉验证预测文件)

  ├── cross.txt (交叉验证评估)

  ├── deleted_feature.txt (需要被删除的特征)

  ├── demo_feature_weight.txt (模型特征权重)

  ├── demo.m  (保存的模型文件)

  ├── feature_with_feature (特征相似度)

  ├── feature_with_label  (特征与标签相似度)

  ├── hist  (分布直方图)

  ├── model

  ├── predict_result.txt (测试集预测结果)

  └── test_score.txt   (测试集评价指标得分)

4.线上使用手册

​ 假设你已经按照3.1的指引生成了你的个人项目文件夹,文件的目录结构为:

|———— Your_project
 	 ...
	| |———— pro_init.py
	| |———— project
	| |	└──your_project
	| |	   └──config
	| |	      └──demo
	| |		 └──ml.conf
	| |		 └──model.conf
	| |		 ...
	| |	      |——log.conf
	| |	   |——data
	| |	      └──sample.txt
	| |        |——log
	| |        |——result
	| |        |——__main__.py									

1.训练

​ 上述project结构中,config文件夹下为模型配置文件和日志配置文件;data为训练集;log是训练过程储存日志的文件夹,你可以在这里查看你的模型运行日志;result用于储存模型运行过程产生的数据分析资料,模型文件等;

​ 训练时,你可以根据自己的任务对配置文件进行调整,数据需存放在data文件夹下;模型训练和预测的结果在result内;加入你已经完成了模型的训练过程,你最需要关注的是result下的变化,其中最重要的是model文件下的demo.m,这是模型训练后的储存文件。

|——result
   |——v1
      |——box
      |——hist
      |——model

2.工程预测

​ 线上使用xeasy-ml时,你需要准备三个文件:demo.m , log.conf 和feature_enginnering.conf;在完成训练步骤后,你可以在project文件夹下找到它们;将这三个文件放在你的工程目录下,接着你需要做的就是写出你自己的predict.py(或者调用xeasy-ml.predict()方法,传入上述三个参数),这个文件包括xeasy-ml中的prediction_ml.PredictionML类用以初始化模型,PredictionML(config=conf, xeasy_log_path = xeasy_log_path)有两个参数:config是用于模型初始化的文件,easy_log_path是模型的日志配置文件;这里有个要注意的地方是我们可以根据自己的需要决定是否传入模型的配置文件(训练中的ml.conf)文件的作用是根据配置信息初始化模型(包括数据处理等),如果执行这一步操作,你需要在与启动文件相同目录下添加’./config/demo/model.conf‘和'’./config/demo/feature_enginnering.conf‘';需要注意的是ml.conf和model.conf的参数调整

self.ml = xml.prediction_ml.PredictionML(config = 'your ml.conf path', xeasy_log_path=xeasy_log_path)

如果只是使用XGBClassifier模型,不需要传入模型初始化文件,也不需要额外建立’./config/demo/model.conf‘文件目录;仅传入日志配置文件即可,但是需要自定义数据处理,代码形式如下:

self.ml = xml.prediction_ml.PredictionML(xeasy_log_path=xeasy_log_path)
self.ml._model = XGBClassifier()
self.ml._model.load_model(model_path)

self.ml._feature_processor = xml.data_processor.DataProcessor(conf=ml_config, log_path=xeasy_log_path)
self.ml._feature_processor.init()

以上步骤是线上模型的两种初始化方式;初始化后,对预测数据进行预测前需要进行数据处理,例:

self.ml._feature_processor.test_data = data_frame
self.ml._feature_processor.execute()
# 测试数据
test_feature = self.ml._feature_processor.test_data_feature.astype("float64", errors='ignore')
# 预测结果
predict_res = self.ml._model.predict(test_feature)
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
Book Item Based Collaborative Filtering

Book-Item-Based-Collaborative-Filtering Collaborative filtering methods are used

Şebnem 3 Jan 06, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022