Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Overview

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021)

This repository contains the code for reproducing the paper: Training GANs with Stronger Augmentations via Contrastive Discriminator by Jongheon Jeong and Jinwoo Shin.

TL;DR: We propose a novel discriminator of GAN showing that contrastive representation learning, e.g., SimCLR, and GAN can benefit each other when they are jointly trained.

Demo

Qualitative comparison of unconditional generations from GANs on high-resoultion, yet limited-sized datasets of AFHQ-Dog (4739 samples), AFHQ-Cat (5153 samples) and AFHQ-Wild (4738 samples) datasets.

Overview

Teaser

An overview of Contrastive Discriminator (ContraD). The representation of ContraD is not learned from the discriminator loss (L_dis), but from two contrastive losses (L+_con and L-_con), each is for the real and fake samples, respectively. The actual discriminator that minimizes L_dis is simply a 2-layer MLP head upon the learned contrastive representation.

Dependencies

Currently, the following environment has been confirmed to run the code:

  • python >= 3.6
  • pytorch >= 1.6.0 (See https://pytorch.org/ for the detailed installation)
  • tensorflow-gpu == 1.14.0 to run test_tf_inception.py for FID/IS evaluations
  • Other requirements can be found in environment.yml (for conda users) or environment_pip.txt (for pip users)
#### Install dependencies via conda.
# The file also includes `pytorch`, `tensorflow-gpu=1.14`, and `cudatoolkit=10.1`.
# You may have to set the correct version of `cudatoolkit` compatible to your system.
# This command creates a new conda environment named `contrad`.
conda env create -f environment.yml

#### Install dependencies via pip.
# It assumes `pytorch` and `tensorflow-gpu` are already installed in the current environment.
pip install -r environment_pip.txt

Preparing datasets

By default, the code assumes that all the datasets are placed under data/. You can change this path by setting the $DATA_DIR environment variable.

CIFAR-10/100 can be automatically downloaded by running any of the provided training scripts.

CelebA-HQ-128:

  1. Download the CelebA-HQ dataset and extract it under $DATA_DIR.
  2. Run third_party/preprocess_celeba_hq.py to resize and split the 1024x1024 images in $DATA_DIR/CelebAMask-HQ/CelebA-HQ-img:
    python third_party/preprocess_celeba_hq.py
    

AFHQ datasets:

  1. Download the AFHQ dataset and extract it under $DATA_DIR.
  2. One has to reorganize the directories in $DATA_DIR/afhq to make it compatible with torchvision.datasets.ImageFolder. Please refer the detailed file structure provided in below.

The structure of $DATA_DIR should be roughly like as follows:

$DATA_DIR
├── cifar-10-batches-py   # CIFAR-10
├── cifar-100-python      # CIFAR-100
├── CelebAMask-HQ         # CelebA-HQ-128
│   ├── CelebA-128-split  # Resized to 128x128 from `CelebA-HQ-img`
│   │   ├── train
│   │   │   └── images
│   │   │       ├── 0.jpg
│   │   │       └── ...
│   │   └── test
│   ├── CelebA-HQ-img     # Original 1024x1024 images
│   ├── CelebA-HQ-to-CelebA-mapping.txt
│   └── README.txt
└── afhq                  # AFHQ datasets
    ├── cat
    │   ├── train
    │   │   └── images
    │   │       ├── flickr_cat_00xxxx.jpg
    │   │       └── ...
    │   └── val
    ├── dog
    └── wild

Scripts

Training Scripts

We provide training scripts to reproduce the results in train_*.py, as listed in what follows:

File Description
train_gan.py Train a GAN model other than StyleGAN2. DistributedDataParallel supported.
train_stylegan2.py Train a StyleGAN2 model. It additionally implements the details of StyleGAN2 training, e.g., R1 regularization and EMA. DataParallel supported.
train_stylegan2_contraD.py Training script optimized for StyleGAN2 + ContraD. It runs faster especially on high-resolution datasets, e.g., 512x512 AFHQ. DataParallel supported.

The samples below demonstrate how to run each script to train GANs with ContraD. More instructions to reproduce our experiments, e.g., other baselines, can be found in EXPERIMENTS.md. One can modify CUDA_VISIBLE_DEVICES to further specify GPU number(s) to work on.

# SNDCGAN + ContraD on CIFAR-10
CUDA_VISIBLE_DEVICES=0 python train_gan.py configs/gan/cifar10/c10_b512.gin sndcgan \
--mode=contrad --aug=simclr --use_warmup

# StyleGAN2 + ContraD on CIFAR-10 - it is OK to simply use `train_stylegan2.py` even with ContraD
python train_stylegan2.py configs/gan/stylegan2/c10_style64.gin stylegan2 \
--mode=contrad --aug=simclr --lbd_r1=0.1 --no_lazy --halflife_k=1000 --use_warmup

# Nevertheless, StyleGAN2 + ContraD can be trained more efficiently with `train_stylegan2_contraD.py` 
python train_stylegan2_contraD.py configs/gan/stylegan2/afhq_dog_style64.gin stylegan2_512 \
--mode=contrad --aug=simclr_hq --lbd_r1=0.5 --halflife_k=20 --use_warmup \
--evaluate_every=5000 --n_eval_avg=1 --no_gif 

Testing Scripts

  • The script test_gan_sample.py generates and saves random samples from a pre-trained generator model into *.jpg files. For example,

    CUDA_VISIBLE_DEVICES=0 python test_gan_sample.py PATH/TO/G.pt sndcgan --n_samples=10000
    

    will load the generator stored at PATH/TO/G.pt, generate n_samples=10000 samples from it, and save them under PATH/TO/samples_*/.

  • The script test_gan_sample_cddls.py additionally takes the discriminator, and a linear evaluation head obtained from test_lineval.py to perform class-conditional cDDLS. For example,

    CUDA_VISIBLE_DEVICES=0 python test_gan_sample_cddls.py LOGDIR PATH/TO/LINEAR.pth.tar sndcgan
    

    will load G and D stored in LOGDIR, the linear head stored at PATH/TO/LINEAR.pth.tar, and save the generated samples from cDDLS under LOGDIR/samples_cDDLS_*/.

  • The script test_lineval.py performs linear evaluation for a given pre-trained discriminator model stored at model_path:

    CUDA_VISIBLE_DEVICES=0 python test_lineval.py PATH/TO/D.pt sndcgan
    
  • The script test_tf_inception.py computes Fréchet Inception distance (FID) and Inception score (IS) with TensorFlow backend using the original code of FID available at https://github.com/bioinf-jku/TTUR. tensorflow-gpu <= 1.14.0 is required to run this script. It takes a directory of generated samples (e.g., via test_gan_sample.py) and an .npz of pre-computed statistics:

    python test_tf_inception.py PATH/TO/GENERATED/IMAGES/ PATH/TO/STATS.npz --n_imgs=10000 --gpu=0 --verbose
    

    A pre-computed statistics file per dataset can be either found in http://bioinf.jku.at/research/ttur/, or manually computed - you can refer third_party/tf/examples for the sample scripts to this end.

Citation

@inproceedings{jeong2021contrad,
  title={Training {GAN}s with Stronger Augmentations via Contrastive Discriminator},
  author={Jongheon Jeong and Jinwoo Shin},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=eo6U4CAwVmg}
}
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Official implementation of the paper "Steganographer Detection via a Similarity Accumulation Graph Convolutional Network"

SAGCN - Official PyTorch Implementation | Paper | Project Page This is the official implementation of the paper "Steganographer detection via a simila

ZHANG Zhi 1 Nov 26, 2021
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
[ECE NTUA] 👁 Computer Vision - Lab Projects & Theoretical Problem Sets (2020-2021)

Computer Vision - NTUA (2020-2021) This repository hosts the lab projects and theoretical problem sets of the Computer Vision course held by ECE NTUA

Dimitris Dimos 6 Jul 21, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022