Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

Overview

smaller-LaBSE

LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fine-tune due to the parameter size(~=471M) of this model. For instance, if I fine-tune this model with Adam optimizer, I need the GPU that has VRAM at least 7.5GB = 471M * (parameters 4 bytes + gradients 4 bytes + momentums 4 bytes + variances 4 bytes). So I applied "Load What You Need: Smaller Multilingual Transformers" method to LaBSE to reduce parameter size since most of this model's parameter is the word embedding table(~=385M).

The smaller version of LaBSE is evaluated for 14 languages using tatoeba dataset. It shows we can reduce LaBSE's parameters to 47% without a big performance drop.

If you need the PyTorch version, see https://github.com/Geotrend-research/smaller-transformers. I followed most of the steps in the paper.

Model #param(transformer) #param(word embedding) #param(model) vocab size
tfhub_LaBSE 85.1M 384.9M 470.9M 501,153
15lang_LaBSE 85.1M 133.1M 219.2M 173,347

Used Languages

  • English (en or eng)
  • French (fr or fra)
  • Spanish (es or spa)
  • German (de or deu)
  • Chinese (zh, zh_classical or cmn)
  • Arabic (ar or ara)
  • Italian (it or ita)
  • Japanese (ja or jpn)
  • Korean (ko or kor)
  • Dutch (nl or nld)
  • Polish (pl or pol)
  • Portuguese (pt or por)
  • Thai (th or tha)
  • Turkish (tr or tur)
  • Russian (ru or rus)

I selected the languages multilingual-USE supports.

Scripts

A smaller version of the vocab was constructed based on the frequency of tokens using Wikipedia dump data. I followed most of the algorithms in the paper to extract proper vocab for each language and rewrite it for TensorFlow.

Convert weight

mkdir -p downloads/labse-2
curl -L https://tfhub.dev/google/LaBSE/2?tf-hub-format=compressed -o downloads/labse-2.tar.gz
tar -xf downloads/labse-2.tar.gz -C downloads/labse-2/
python save_as_weight_from_saved_model.py

Select vocabs

./download_dataset.sh
python select_vocab.py

Make smaller LaBSE

./make_smaller_labse.py

Evaluate tatoeba

./download_tatoeba_dataset.sh
# evaluate TFHub LaBSE
./evaluate_tatoeba.sh
# evaluate the smaller LaBSE
./evaluate_tatoeba.sh \
    --model models/LaBSE_en-fr-es-de-zh-ar-zh_classical-it-ja-ko-nl-pl-pt-th-tr-ru/1/ \
    --preprocess models/LaBSE_en-fr-es-de-zh-ar-zh_classical-it-ja-ko-nl-pl-pt-th-tr-ru_preprocess/1/

Results

Tatoeba

Model fr es de zh ar it ja ko nl pl pt th tr ru avg
tfHub_LaBSE(en→xx) 95.90 98.10 99.30 96.10 90.70 95.30 96.40 94.10 97.50 97.90 95.70 82.85 98.30 95.30 95.25
tfHub_LaBSE(xx→en) 96.00 98.80 99.40 96.30 91.20 94.00 96.50 92.90 97.00 97.80 95.40 83.58 98.50 95.30 95.19
15lang_LaBSE(en→xx) 95.20 98.00 99.20 96.10 90.50 95.20 96.30 93.50 97.50 97.90 95.80 82.85 98.30 95.40 95.13
15lang_LaBSE(xx→en) 95.40 98.70 99.40 96.30 91.10 94.00 96.30 92.70 96.70 97.80 95.40 83.58 98.50 95.20 95.08
  • Accuracy(%) of the Tatoeba datasets.
  • If the strategy to select vocabs is changed or the corpus used in the selection step is changed to the corpus similar to the evaluation dataset, it is expected to reduce the performance drop.

References

You might also like...
Comments
  • Training time  and  Machine configuration

    Training time and Machine configuration

    Hi, thanks for your sharing model. I want to make a smaller model, just contains two languages(en, zh). And I want to know the kind of machine GPU and how long does it need to cost?

    opened by QzzIsCoding 2
  • Publish model to HuggingFace Model Hub?

    Publish model to HuggingFace Model Hub?

    I migrated the full LaBSE model from TF to PyTorch and uploaded them to the HuggingFace model hub. I saw this model on the TF hub and started migrating it for uploading to the HF Hub. I realized then that this wasn't published by Google but by @jeongukjae, so wanted to check with you before uploading it.

    I have exported the model locally. I'm happy to check the changes in and upload the exported model if that's fine for you :).

    opened by setu4993 2
Owner
Jeong Ukjae
Jeong Ukjae
Khandakar Muhtasim Ferdous Ruhan 1 Dec 30, 2021
Auto-researching tool generating word documents.

About ResearchTE automates researching by generating document with answers to given questions. Supports getting results from: Google DuckDuckGo (with

1 Feb 14, 2022
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation.

Covid-19-BOT Samantha, A covid-19 information bot which will provide basic information about this pandemic in form of conversation. This bot uses torc

Neeraj Majhi 2 Nov 05, 2021
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
An Explainable Leaderboard for NLP

ExplainaBoard: An Explainable Leaderboard for NLP Introduction | Website | Download | Backend | Paper | Video | Bib Introduction ExplainaBoard is an i

NeuLab 319 Dec 20, 2022
CMeEE 数据集医学实体抽取

医学实体抽取_GlobalPointer_torch 介绍 思想来自于苏神 GlobalPointer,原始版本是基于keras实现的,模型结构实现参考现有 pytorch 复现代码【感谢!】,基于torch百分百复现苏神原始效果。 数据集 中文医学命名实体数据集 点这里申请,很简单,共包含九类医学

85 Dec 28, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Japanese synonym library

chikkarpy chikkarpyはchikkarのPython版です。 chikkarpy is a Python version of chikkar. chikkarpy は Sudachi 同義語辞書を利用し、SudachiPyの出力に同義語展開を追加するために開発されたライブラリです。

Works Applications 48 Dec 14, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries.

VirtualAssistant Simple virtual assistant using pyttsx3 and speech recognition optionally with pywhatkit and pther libraries. Third Party Libraries us

Logadheep 1 Nov 27, 2021
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022